Chapter 22 – XM Weather

Last night I had finished making both a long list of notes –including questions to ask different vendors– regarding my in-cockpit XM weather capability using my WxWorx receiver.  Overnight I had an epiphany on two fronts.  The first was that I resigned myself that I was only going to pipe XM satellite weather into my cockpit on one device: my Bendix/King AV8OR portable GPS.

The second was that instead of messing about with trying to figure out how to purchase a nearly-impossible to find (original optional component) RS232 cable for a hard-wire setup between my XM Wx receiver and display (AV8OR), that I would instead look seriously at using Bluetooth betwixt the two.

You may be wondering why I’m not pushing to have my HXr EFIS display XM Wx data, and at first I was very much intent on doing just that.  However, having dug into the XM Wx display capabilities of GRT’s HXr EFIS, it honestly just doesn’t match up nearly as well in displaying various XM weather products as the AV8OR does.  Yes, although a bit older platform, the AV8OR simply beats out the HXr in XM Wx display at just about every turn (except display size).

The bottom line is that in my realization of the amazing & difficult number of technical/logistical hoops I’d have to jump through to get the XM Wx to display on both the HXr (fewer XM Wx products) and the AV8OR GPS (nearly all XM Wx products), I was driven to an undesired —but EZ— decision to go with just the AV8OR to display my in-cockpit XM Wx data.  To be clear, I will still display NexRad Wx data on my HXr EFIS, but just via ADS-B.

To provide somewhat of a full scope report, I will say that I discovered a device —Mobile Link— now offered by Baron (AKA “WxWorx”) that translates the XM Wx data across a WiFi signal to be used on up to 4 portable devices such as iPads, iPhones, and Android phones/tablets.  Upon a closer look however, I unfortunately discovered that Mobile Link provides an either-or solution, not an either-and solution in that I could either go the Mobile Link route for JUST a WiFi solution (mobile), or with my current XM Wx receiver to panel device solution (EFIS, GPS unit, etc)…. but not both.  Since it would cost much extra for Mobile Link, I decided not to go this route and will continue looking for more viable solutions to get XM Wx on my mobile devices…. specifically on my iPad for Foreflight.

In narrowing my target focus, I again decided to shoot for getting my XM Wx data solution implemented with the most elegant solution possible.  Although I currently have a USB cable connection on my XM Wx receiver, I still had a nagging question on just how exactly that would interface with my AV8OR GPS unit.  What I did know however, is that it would require an optional cable which I do not currently have on hand. Note, that “cable” here is also a significant, operative word.  The bottom line is the location and fit of my AV8OR on my panel is very tight, and introducing a new cable would add to its complexity of getting it situated on a tightly packed panel and its use (removing during non-use and during fly-ins, etc).

Although an unexpected expense, by purchasing the XM Wx receiver Bluetooth module from Aircraft Spruce, it knocks out the proverbial 2 birds with 1 stone: 1) It solves all questions about connecting device A (AV8OR) to device B (XM Wx receiver, and 2) it makes the install overwhelmingly much cleaner and easier.  So, I pulled the trigger on the Bluetooth module.

Fellow builders that know me know that I often use a term, half in jest, that it’s “better to be lucky than good.”  And as I’ve shared with you before, an old boss of mine used to so wisely say, “Luck is when preparation meets opportunity.”  Well, I think both of those came into play today since I was able buy literally the last Bluetooth module that Aircraft Spruce had in stock for a 2nd generation XM Wx receiver.

On top of that, since the Bluetooth module replaces the USB cord module it then goes to reason that another power source is required (since the USB cord provided it in the wired configuration).  Well, due to a note on the Aircraft item page for the Bluetooth module that some of these peripheral items may be available, after a short hold while the very helpful Aircraft Spruce sales rep called the company that makes the power cords, I was happy to hear that I would be allowed to purchase one of just a few power cords they had left… Woo-hoo!

With my initial XM Wx data solution seemingly resolved, I then pressed on to creating a wiring diagram for the Trig TT22 Mode-S transponder.  I have depictions of its install in a few other diagrams, but since I decided to place it in the outboard pocket of the right strake, I figured I had better expound a bit on the particulars of its wiring and installation. Thus, here is the resulting transponder wiring and installation diagram.

The transponder wiring diagram above is actually a significant milestone in my build, since it caps a near 5-year effort to document my entire electrical system and components into individual diagrams.  So, for those of you that are interested, here’s the latest updated list showing all my Electrical System Wiring Diagrams:

0. Index Page
Z.  Z-13/8 Electrical System
A.  Switches, Circuit Breakers & LEDs
.99 Grounding Busses
1.  Panel Components
2.  Radio & audio system
3.  Panel Power
4.  Electrical System Components Location Diagram
5.  Aircraft Wire Labeling Sectors Diagram
6.  Nose Gear/AEX System
7.  Pitch & Roll Trim Systems
8.  Lights: LDG, TAXI, NAV, STROBE
9.  Engine Info Management
10. Fuel System
11. Cockpit Lighting
12. Landing Brake
13. Throttle Handle Switches
14. Control Stick Switches
15. Integrated Backup Battery System & X-Bus
16. Gear & Canopy Warning
17. Charging System
18. AG6 Warning Annunciators
19. Electronic Ignition
20. P-Mag Ignition
21. Oil Heater System & Seat Warmers
22. Starting System
23. ELT
24. Heated Pitot Tube
25. Trio Autopilot
26. Video Camera System

27. Heads-Up Display (HUD)
28. Transponder
29. XM Weather
30. Long Wire Runs

 

 

Chapter 22 – New Wiring Diagrams

Yeah, not a lot going on as far as actual building, but I am getting some of the low hanging fruit –which does take a good bit of time– out of the way.

To start off, I did get my 15 amp mini-ANL fuse delivered.  Just for sake of closure here’s a shot of it installed in the fuse holder.

In addition, over the last couple of days I’ve created wiring diagrams for the ACK E-04 ELT:

the Trio Pro Pilot Autopilot:

And the GRT HUD system:

I do have a bit of final cleanup stuff and crosschecking to do on each of these diagrams, but for the most part they are complete.

Finally, in the next few days I plan on knocking out the Trig TT22 Transponder wiring diagram, which at this point is the last wiring diagram left to complete.  Moreover, I’ve made updates and tweaked about 10 other wiring diagrams so my electrical system documentation is pretty up to snuff currently.

I’ll continue to update you all on any minor bits of progress or massive decisions that I make on the build as they occur!

 

Chapter 22 – E-Bus Feed Fuse

From my research this was the best Mini ANL (MIDI) fuse holder that I could find to serve as my new E-Bus feed fuse holder…. and I quite like it too.  It’s lightweight (1.4 oz) yet quite sturdy and simple in design.  As you can see, it has two #10 screw posts which each serve double duty to both retain each end of the Mini ANL fuse/current limiter and secure the respective wires’ terminals to the fuse holder.

The actual nomenclature for this component is the EATON Bussmann LMI1-E-2-0 Fuse Holder with Cover.

The attached red rubber protective cap simple pushes into place –with slots on the underside of the cap– onto the center vertical posts that are situated above and below the center fuse area in the pic above.

Below are pics with the red protective cap in place.

And here is a representative shot of the Mini ANL (MIDI) type fuse, which of course is just a smaller version of the more robust 40-60A current limiters often seen in many experimental airplanes on the alternator’s B-lead circuit.

I looked around at a couple of auto parts stores in hopes that they would have these Mini ANL (MIDI) fuses in stock, but alas, I ended up having to order them online.

So I now have all the components identified/on-hand/on order to make the modification in my conversion to Bob Nuckoll’s new Z-36 E-Bus feed circuit, which IMO is much better than the previous circuit design I was using.

 

Chapter 22 – GRT HUD

Well, as I was looking up some info on the GRT Avionics site yesterday I ran across their home page banner on their integration and use of a Heads Up Display (HUD).  I remember quite a while back my buddy Brian Ashton up in Alaska discussing how he had picked up a HUD unit for his GRT avionics suite.  We had a few brief discussions on GRT’s HUD system (the backbone component is actually from Hudly) and I really never gave it much thought after that.

Still being in my self-enforced downtime due to my back and hip (which are getting better at a snail’s pace), I took the time to really dive into this unknown world of GRT HUD technology.  Well, as you can see from the pics below, the integrated HUD along with the GRT avionics does a really good job of displaying a ton of key flight data.

These pics were taken by GRT’s Greg Toman in his RV6 during a bright day.  During Greg’s subsequent discussion on this HUD system he noted that after takeoff on his first flight with the HUD installed, he realized after landing that he had not looked inside the cockpit for primary flight data once during the entire flight.  In short, it was just way too EZ to reference the HUD for this flight data info, which then allowed him to concurrently keep his eyes looking outside for traffic.

Moreover, GRT’s integrated HUD provides a ton more information than just basic flight data.  In the depiction below, in addition to airspeed, altitude, heading, attitude, altimeter, turn coordinator and wind speed/direction, it also provides

  • HSI (lower left)
  • Waypoint info (upper left): WPT, distance, ETA
  • GRT’s Highway-In-The-Sky (HITS) boxes
  • Armed GRT Synthetic Approach (SAP) [4.5° descent angle, also shown during ILS]
  • Runway depiction (near center of inner HITS box)
  • Flight Director & Flight Path Marker (magenta circle & target symbol above ALT box)
  • Vertical & lateral approach “needles” (yellow hash marks)
  • Runway info/data (upper right): KLDM, Rwy 01, currently 976 feet above runway
  • Selected altitude (upper right) “SA-700”

Call me impressed (or a sucker… ha!) but after a 45 minute phone call with Greg at GRT, I was convinced enough to at least give this HUD technology a try.  I ordered a small Android Compute Stick [a mini computer somewhat like the Raspberry Pi, but quite often used for processing video signals] that serves as the BlueTooth interface between the GRT EFIS components and the HUD system.

Fast forward to today, where I received the Android Compute Stick and immediately started to get the GRT Remote App loaded onto it (which required an HDMI-cabled monitor, thus allowing me to use my recent space-saving purchase of a Smart TV!). In the end, I was able to cobble together just enough bits n’ pieces to make this happen.  As you can see below, for the pic of the Android Compute Stick I added the ubiquitous decimal tape measure into the shot for size determination.

I then set-up the various HUD parameters for what will be my specific HUD configuration.

One nice feature of the GRT Remote App is that it lets you check how the HUD display will look as you change out the various configuration settings in the app menu.

Finally, I do plan on having a small Android screen on a RAM ball mount for GIB situational awareness, so just as an FYI this PFD below is how flight data info will be presented to the GIB.

I don’t plan on actually purchasing the HUD equipment until next year some time, but I did want to get a jump on things for planning purposes HUD-wise.  Thus, I’ve already designated the HUD’s power connection points in my current electrical system configuration.

 

Chapter 22 – Electrical System Tweaks

My current back ailment puts me in a bit of an irony at the moment: since I want to take it EZ for a good bit to let my back and hip heal up, I am now actually able to do some much needed administrivia and cleanup tasks on the electrical system.  Kind of a catch-22 scenario at the moment in that the longer I delay on getting my house sold, the longer it will take to get back on the build… but in my current state, I’m actually able to focus on a number of aspects of the build.  Life can be weird sometimes!

To start off, Bob Nuckolls must be bored (or something!) as he’s been ginning up some new Z diagrams to tweak some of his older stuff.  Well, over a year ago he reviewed my basic electrical system architecture and signed off on it, but in the process told me that I didn’t need a relay that I had in place to control isolating (powering) the E-Bus to SD-8 b/u alternator power when/if I had a main alternator failure.  I removed the relay to simplify and lighten my system, but never had a 100% warm fuzzy on doing so. I also wasn’t keen on my entire E-Bus being powered via a 15A ATC blade fuse off the Battery Bus.  ATC blade fuses tend to be a bit more on the fast-blow side so they are more likely to nuisance trip, so the sizing is a bit more touchy on critical components than say a slower-blow CB.

Well, Bob has since remedied both those issues with a new Z-36 design (see below), which I quickly scarfed up and implemented into my system architecture.  Not only does the new Z-36 put the relay back into play, but it feeds the whole E-Bus circuit from a much more robust ANL fuse.  Since I wanted to go with a lower amp rating than 30 amps (depicted on Bob’s diagram), I actually downsized to a MINI ANL fuse and will be using either a 15A or 20A mini ANL fuse. During my research, I was also able to find a good fuse holder mount for it and pulled the trigger on it.

I updated my master electrical system diagram to show this modification, which significantly changed my wiring circuitry to/from the Battery Bus & E-Bus for the b/u alternator power feed, and also the switch circuitry that drives the switching from main to b/u alternator/E-bus power.  Luckily, I hadn’t really wired any of that up so I won’t have to do any major rewiring work. Now, while the logic of my configuration matches Bob’s Z-36, my mechanical implementation is just a tad different than his, as I show here (focus on top center of diagrams):

In addition, I spent a bit of time reworking the AEX switch on Marc Zeitlin’s new gear architecture to add an “OFF” position [which, BTW, Marc had in his original design and I am now putting back in based off the advice from Joe Coraggio in his recounting his off-field landing].

My new switch’s wiring is not exactly how I would design it if I were starting from scratch, but it will definitely work and –moreover– will keep the aviation standard of the bottom switch position being “OFF.”  It also eliminates any extensive re-wiring other than lopping off the wires from the current switch and re-soldering them to the new OFF-ON-(ON) switch.  So, on the new 3-position switch, the bottom position is OFF, the middle position is AEX AUTO, and the top momentary position is Emergency Gear Extend, as shown here.

If you’re wondering what switch I’m talking about and it’s location in regards to the panel, I’ve circled it in white and have an arrow pointing to it.  Yes, it’s the one in the black and yellow striped switch guard.

I also took a bit of time while adding the new Z-36 design into my system to do an inventory of all my relays and inline fuses.  I found a couple of discrepancies in the component ID numbers due to repeated additions, changes and swap outs during system design.  I’ve cleaned up the IDs and the lists so I’m up to snuff with both of those electrical system component categories.

My final task related to the wiring was that due to a variety of reasons (from limited behind-panel space to near-max antenna cable run) I decided to place my Trig TT22 transponder out in the right strake pocket and worked up the new wiring scheme for that.  I’m actually running the power wires via the CS spar conduit from the hell hole, so that only leaves 4 x 22AWG signal wires that I’ll need to run through a nylaflow conduit imbedded into the lower front LE of the strake.  While working the wiring for moving the Trig TT22 out from behind the panel to the end of the right strake, I also finalized the configuration for another (2 of 2) consolidated 22AWG 6-wire cable that will start behind the panel and end in the hell hole.

In addition to working my plane’s electrical system taskers, I’ve also been getting back into the books on flying, IFR and avionics.  I’m hoping to get back in the cockpit for another 1-3 months during my transition down to NC to get my flying “sea legs” back underneath me!