Chapter 22 – Avionics & Instruments

Chapter 22 – Avionics, Instruments & Accessories

NOTE: The actual wiring of these components is covered on the Electrical System Overview, Installation & Wiring page.

5 June 2013 — I grabbed the 2 RAM ball mounts that I had just received from Aircraft Spruce to mock them up.  My initial plan is to have one RAM ball mounted to the Right-side fuselage wall in the hardpoint I embedded just aft of the instrument panel–as I have mocked up in the pic below (I posted this in Chapter 22 since it deals with the panel).

Chap 22 - Side fuselage RAM mount

The other RAM ball mount will be mounted on the center instrument panel post.  The bolts used to attach this RAM ball mount will also serve to attach the bracket on the pitch trim actuator for my Davenport pitch trim system (also shown in the picture below is my Andair fuel valve).

RAM/Pitch Trim Mount & Fuel Valve

Chap 17 - Pitch Trim Actuator Mount

The screw used in the above picture is a AN3- (3/16″) vs an AN4- (1/4″) screw/bolt that will be used to attach the RAM mount & pitch trim actuator bracket.

[Operational Note: Since I have switched my pitch trim system to utilize the Atkinson pitch trim, which uses a different actuator, I am currently NOT planning on using the pitch trim actuator or bracket shown above. Although I do still plan on using the RAM mount on the panel.]


11 June 2013 — Today was a light build day (no pics).

I also did some research on autopilots, specifically checking out the Trio autopilot models. I also built a couple of cardboard & duct tape mockups for the Garmin GNS430W GPS & Trio Gold Standard servo.  I played around with the position of those components for a while in the avionics bay behind the instrument panel.


13 November 2013 — Well, since I’ve been researching out my avionics & instruments alongside my engine components, I’ve started scheduling out some purchases for some of the panel avionics that I know I’ll for sure be installing.  One such item I serendipitously stumbled across in my research is the Flight Data Systems AFP-30 Air-Data Fuel Computer.  This guy was developed by a RV driver to add some more data points that he wanted to see in his cockpit.  After researching this out and cross-referencing it in a matrix I have to compare all the functions of all possible avionics and instruments, I decided that this was definitely going on my instrument panel to provide me both unique & back-up instrument capabilities.

Chap 22 - Air-Data Fuel ComputerChap 22 - AFP-30 Air-Data Fuel Computer

The AFP-30 performs functions in 3 main areas:

Air Data Computer

  • Altitude
  • Density Altitude
  • Indicated Airspeed
  • True Airspeed
  • Mach Number
  • Total Air Temperature
  • Saturated Air Temperature
  • Winds Aloft
  • Crosswind Component
  • Headwind Component

Fuel Flow Computer

  • Fuel Flow (Gallons/hour or Liters/Hour)
  • Fuel Used
  • Fuel Remaining
  • Fuel to GPS Waypoint
  • Fuel At GPS Waypoint
  • Range
  • Endurance
  • Fuel Efficiency (NMPG, MPG, MPL)

Performance Computer

  • Manifold Pressure
  • RPM
  • Percent Horsepower

[Operational Note: Due to weight and moreover, panel space (or lack thereof) I am currently NOT planning on using the AFP-30 on my panel.]


4 January 2014 — The plan right now is to definitely have full ADS-B by using the Trig S-mode Transponder and a capable ADS-B receiver to provide that capability.  I have to say that one thing I really like from the GRT folks is they tend to play nice with others, this means options.  On GRT’s page where they discuss the various ADS-B receivers that will integrate nicely with their EFIS systems, they provide some pretty good info.  Of course, I original set my sights on the Navworx ADS-600B, but after looking at & assessing my actual bottom line requirements I decided that if I am going to have enough funds available to get this bird in the air within the next 10 years, I better forego the almost $2600 receiver and get a little more pragmatic (my primary goals were to have an ADS-B receiver that would integrate with my Trig S-mode transponder, display weather & traffic data on both my EFIS display and iPad, and meet the FAA’s 2020 ADS-B requirements).

Enter Radenna’s SkyRadar ADS-B Receiver.  Although at first glance the SkyRadar seemed to be nothing more than a portable receiver, as I looked at it more and more it seemed to be a very capable receiver.  And, as with the many components I’m looking at or have bought, a number of the RV drivers give the SkyRadar enthusiastic thumbs ups. So, the SkyRadar went on the list as the most likely candidate that I would purchase in the future for my ADS-B receiver.

Chapter 22 - Skyradar-DX ADS-B Receiver

You may be asking, “What happened?”  Well, if the recent past tells you anything, then you’ll know that I’m cheap… and in being cheap I refer back to my oft cited mantra that sometimes you’ve got to spend money to save money!  Ok, the bottom line is I went to Radenna’s website to confirm some info on the SkyRadar-D, when lo & behold they had just come out with the SkyRadar-DX . . . which includes a built-in AHRS!  Moreover, they had a sale where the first 50 buyers get $200 off the price that the SkyRadar-D normally sells for.  So, after a few hours of conformational research to ensure this was in fact the ADS-B receiver I wanted, I pulled the trigger.

So here’s the info on this device:

SkyRadar-DX Dual Band Receiver with Built-In AHRS

Key features:

  • SkyRadar-DX’s operating frequencies are 978MHz and 1090MHz and the latter conforms to DO-260 standard.
  • 5Hz GPS receiver
  • Artificial Horizon Information
  • Output data over Wi-Fi network (multiple displays can be connected)
  • Operates as Wi-Fi Access Point
  • USB high speed serial port output
  • Input voltage 11-36 volts
  • Power consumption less than 5 watts

The SkyRadar Receiver contains the following major components:

  • UAT receiver tuned to receive and process ADS-B data
  • High accuracy GPS module
  • WiFi module transmitting data to iPad, iPhone or iPod Touch


26 January 2014 — Just an update on the continuing project planning & component acquisition efforts.  I have been spending a lot of time both on my electrical system & subsequently on my instrument panel.  As I get more research under my belt, gain a bit more knowledge, and figure things out, I then of course ask my building buddies what their plans are for whatever I’m currently carrying on about.

In one of the latter iterations of my planned instrument panel, my buddy Marco noted the myriad of redundant capabilities I had for simply displaying airspeed and altitude.  Of course I want SOME redundancy in my systems for backup purposes, but having 4-5 different ways to measure airspeed may be a bit overkill!  I hadn’t intentionally planned on having this many, just so many of the newer avionics these days have built in extras that may add more than we need if we go back and assess our actual requirements.

One of my primary culprits in this area was the TruTrak Gemini PFD.  It’s a great piece of technology and really has a lot packed into a nice, small package.  But when I went back and re-assessed my requirements, I had included it on my panel for one primary reason: as a backup attitude indicator.  I had accepted the fact that it provides airspeed and altitude information simply as a bonus.  But at what cost?  Cost here meaning actual money, since at 5.4 ounces it wasn’t necessarily breaking any feasible weight allowance thresholds.

So, in the vein of saving money and sticking to a prioritized plan to get this project in the air soonest, I decided to forgo the extra ASI & ALT features built into the Gemini PFD and focus on the primary capability I needed here, again, simply a solid backup attitude indicator.  In my ensuing research I found a TruTrak ADI for sale on Ebay for way below half the cost of a new Germini PFD (and well below the new touchscreen 3-1/8″ TruTrak ADI as well).  After a number of emails back and forth with the seller–who had just pulled it out of an RV-8 during a panel upgrade–I decided to pull the trigger.

Now, I will suffer about an 8 ounce weight penalty vs using the Gemini PFD/ADI, but for now I’ll simply put the Gemini PFD/ADI (or whatever future equivalent) in the “planned upgrades” category, to be purchased down the road after my bird is flying.  Swapping TruTrak for TruTrak will be a fairly easy upgrade both physically & electrically, but will of course require a new weight and balance . . . but most likely I’ll have a few more upgrades & modifications in the mix around that same timeframe, so I’m sure a new W&B will be in order regardless.

Thus, introducing the latest addition to the instrument panel:

Chap 22 - Trutrak ADI

TruTrak ADI (3-1/8″) Features:
– Gyro / VS pitch display
– Bank Angle display
– Built-in Ground Track DG (via built-in GPS)
– High Bank Angle Warning
– Low Airspeed Warning
– Slip/Skid ball


12 February 2014 —  Instrument update.  Oddly enough, I have had the Trio Autopilot on my list for quite some time now as a January 2014 purchase.  Admittedly, I vacillated between buying the whole autopilot system or just buying the servos.  Specifically, I was looking at the Trio Pro Pilot, and to be clear, I put it on the “to-buy” before I knew I was going to spend a year in the Middle East for Uncle Sam… thus planning to be much further along in the build.

Now, I’m going to digress just a bit to elaborate on how I came to the decision to go with the Trio Pro Pilot Autopilot.  I had never heard of Trio before the Summer of 2012, when I was engaged in one of my many research sessions on Mike Beasley’s site.  On his panel, he had a cutout of the Trio EZ Pilot.  Being the curious type and intrigued as to Mike’s choice of autopilot, I did some research on a new found prospect.  After watching a couple of YouTube videos on the Pro Pilot–that took something to me that was  something shrouded in a cloud of mysticism and magic (i.e. autopilots) & making it all look simple–I was initially sold on the Pro Pilot.

That all being said however, I do TRY to approach my aircraft component selections somewhat clinically and empirically, so during my time in Tampa, Florida, I set out to confirm my initial feel-good thoughts on the Trio Pro Pilot by contrasting and comparing to other autopilots.  The contest came down to the Trio Pro Pilot and the GRT “insta-” autopilot (just add servos!).

Now, there was no doubt in my mind that GRT’s autopilot was fantastic, as well as cheaper and lighter, but three things stood out in my mind for the Pro Pilot being just a cut above GRT’s autopilots.  1)  Redundancy.  GRT can easily run the Trio autopilots, but at the same time, if my GRT EFIS fails, I still have a separate autopilot system that is separate from my EFIS system.  2)  Ease of use.  Either the guys at Trio are true geniuses or just completely lucky, because IMO they absolutely nailed the interface and created an autopilot that is really darn easy to use (I think it’s both, but no doubt the Trio guys are geniuses… and great to work with!).  3)  Integration.  Lastly, since the Trio guys are EZ guys, there are clear-cut specific instructions on how to install these things into a Long-EZ, Cozy, etc.   No guess work or interpolating!

Ok, so back to my component purchase plan.  After pondering it a bit, I rearranged my purchasing plan and kicked the Trio Autopilot can down the road.  I figured all major electrical & avionics purchases should wait until I’m farther along in the build.  Besides, I still have one major purchase left for the engine: the cold air induction system from Sky Dynamics.  Thus, I demoted the Trio and moved up the cold air induction system and felt pretty good about holding to a prioritized plan.

Ahhh, but fate & irony always play into the story, eh.  In January, as I was spending some time perusing eBay for stuff, I ran across a guy who was selling his Trio Pro Pilot servos that he had picked up a few years ago for his Zodiac 601XL project.  His price was not that far below what a new set of servos would cost, so out of curiosity I inquired Chuck at Trio about any possible upgrades or mods that might be needed on some servos that were a few years old.  Chuck did confirm that there had indeed been some upgrades in the past few years, and that they would be happy to upgrade the servos to new specs if I purchased them.  Well, after doing some cost analysis, it just wasn’t worth getting the older servos.  So I let the servos go and moved on to other things.

Well, I noticed about a month later that, apparently, the gentleman selling the Trio servos wasn’t able to sell them and had them back on eBay for a much lower starting price.  Thus, armed with the knowledge and known cost for upgrading the servos to new specs from Chuck at Trio, I had a cost window to operate within for possibly getting the servos and saving a fair amount in the process.  Well, being a self-proclaimed eBay sniper I watched the auction for 6 days, and in the last 10 seconds there were 2 other guys that bid on it, but I was fortunate enough to win the bid.

Having pre-coordinated with Chuck on my intentions, I had the seller send the servos straight to Chuck at Trio, where they checked them out, made a couple of upgrades to bring them up to new specs, and then function tested them to ensure they were A-OK operationally.  With the hundreds of dollars I saved on the servos, I had Chuck throw in a Trio Pro Pilot wiring harness and a few hardware pieces specifically for a Long-EZ install.  Below are some pics of my new Trio Pro Pilot Servos.

Chap 22 - Trio A/P Servo

Chap 22 - Trio A/P Servo

Chap 22 - Trio A/P ServosChap 22 - Trio A/P Servo

Chap 22 - Trio A/P Servo KitChap 22 - Trio A/P ServoChap 22 - Trio A/P ServoChap 22 - Trio A/P Servo

I feel fortunate to have found these servos, and ironically stick to my original purchase plan, even though I had changed it.  I feel compelled to quote an old boss here as he defined “luck” as “when preparation meets opportunity.”


6 March 2014 — After reviewing my intended mission profile and realizing that using the Long-EZ’s range in traversing the US–meaning midwest thunderstorms–as well as flying up and down the mid-Atlantic region with its inherent summer thunderstorms, for safety and increased comfort factor I wanted some form of real-time lightning detection capability… above and beyond NEXRAD weather.  I researched out the various lightning detection systems, and decided that I would like to install either a Stormscope or an Insight Strike Finder.

Chap 22 - Strike Finder

I found an older Strike Finder on eBay and decided it was worth purchasing.  Although it was an older model, I had pre-coordinated with Insight Avionics to check out and upgrade the unit to an Ultra Bright LED display.  This upgrade replaces the face of the instrument so that not only is the display much more readable and reliable, but the the entire instrument face is brand new.

Chap 22 - Strike Finder Sensor

I was able to buy both the control head and the sensor unit (antenna) as well.  I shipped the control head and sensor off to Insight where they provided a sensor cable, and checked out the unit.  After the control head & sensor units checked out fine, the Insight techs upgraded the display to the Ultra Bright LED.

Here’s the actual unit (before upgrade) shown below:

Chap 22 - Strike Finder

Chap 22 - Strike Finder

Here’s a description of Strike Finder’s capabilities from the Aircraft Spruce site:

The STRIKE FINDER® Digital Weather Avoidance System detects and analyzes the electrical activity emanating from thunderstorms within a 200 nautical mile (nm) radius of the aircraft. A unique graphic display plots an accurate, reliable and easily-interpreted picture of electrical activity that you can use to circumnavigate the hazards associated with thunderstorms.

The STRIKE FINDER® System analyzes the individual strike signal properties to determine the bearing, range and severity of the activity. Strike data is plotted on the display as single orange dots by range and azimuth, in relation to the aircraft symbol (“heads up”). As the number of lightning strikes increase, so does the number of plotted strike dots. Cells start to form indicating increased lightning activity.

[Operational Note: Due to weight and moreover, panel space (or lack thereof) and after a long discussion with Nick Ugolni on the difficulties of mounting the Strike Finder into a Long-EZ, I am currently NOT planning on using the Strike Finder in my Long-EZ.]


21 March 2014 — I received the Strike Finder system back from Insight after they upgraded the display to a bright LED one.  Quite a contrast (literally) from the old style plasma display.  They also did a complete checkout of the system, including both the control head and the sensor.  In addition, I had them throw in a new cable that links the control head to the sensor.

Note all the re-certification documents for the individual components in the right side picture below.

Chap 22 - Strike Finder


Chap 22 - Strike Finder

I have to say that the folks at Insight are a great group of people that are both extremely pleasant and very helpful to work with.  They explained everything in depth, laying out all my options in a very clear and detailed manner.   I am very impressed with this company.

[Operational Note: Due to weight and moreover, panel space (or lack thereof) and after a long discussion with Nick Ugolni on the difficulties of mounting the Strike Finder into a Long-EZ, I am currently NOT planning on using the Strike Finder in my Long-EZ.]


24 March 2014 — I got the idea for installing a fuel fume detector from the RV guys over on the VAF forums. It makes sense to me especially in a plastic airplane like the Long-EZ where almost the entire fuel system resides in or around the cockpit.  I definitely want to know if I have any hint of a fuel leak as soon as absolutely possible.

There doesn’t seem to be many fuel vapor sensors out there on the market, and a few of the RV flyers swore by the Xintex Fireboy Fuel Fume Detector.  Now, these are actually sensors used in the boating community to sense any problems in their engine compartments.  So I bought one off a guy who recently installed it in his boat, but then decided to swap his boat engine out with a diesel motor.  Thus, I was able to get it much cheaper than what they sell for at the normal boat supply retailers.

The pics below show the control head face, the vapor sensor and the connecting cable between the two:

Chap 22 - Xintex Fuel Fume Detector

Chap 22 - Fuel Fume Detector SensorChap 22 - Fuel Fume Detector Cable

You’ve probably noticed this on my instrument panel pictures.  I’m not sure if I’ll actually mount it on the actual panel or not, but I normally mock it up to see if I will have space for it if I do decide to panel mount it.


28 March 2014 — I have to say that in addition to Insight, the company that makes the Strike Finder, I’m so far quite impressed with the folks at Radenna who offer a line of SkyRadar ADS-B Receivers.  Back in early January when I purchased their latest ADS-B receiver, the SkyRadar-DX, they stated they would be shipping on March 20th, and they did exactly that!

The DX model is different from the previous SkyRadar ADS-B receiver models in that it offers WiFi (Apple, Windows & Android compatible) with attitude indicator (PFD) information displayed over the WiFi channel.  Of course the standard ADS-B info, traffic and NEXRAD weather, is transmitted to wireless devices as well.  Like the SkyRadar-D, one nice thing about this unit is that it receives both 978 and 1090 MHz signals.

The wireless is a bonus since the primary operation of this system will be via a USB connection between the ADS-B receiver and the GRT EFIS, so all ADS-B info will be available on the EFIS screen.

Also, remember that the ADS-B receiver is only one half of the ADS-B equation, in that to fully utilize all that ADS-B has to offer a Mode-S transponder must be used as well.  I’ll be using Trig’s TT-22 mode-S transponder that will be remotely mounted behind the panel and controlled through either of my GRT displays.

So without further ado, here are some pics of my new ADS-B Receiver.

Chap 22 - SkyRadar-DX ADS-B Receiver

Chap 22 - Radenna Dual-channel ADS-B ReceiverChap 22 - SkyRadar-DX ADS-B ReceiverChap 22 - SkyRadar ADS-B Antennas & GPS PuckChap 22 - SkyRadar ADS-B Antennas & GPS Puck

To watch a short YouTube video showing the setup of the SkyRadar-DX ADS-B Receiver click here.
For a longer 10 min video showing the moving map & traffic features click here.
To see the SkyRadar NEXRAD weather in action check out the short video below:


2 April 2014 — Today I finally pulled the trigger on some behind the scenes–or rather, behind the panel–components.  While some EFIS systems like Garmin make use of Micro-SD cards for updates, etc, GRT uses USB for software updates, system backups, and historical logging of flight and engine data.  In addition, GRT’s remote BlueTooth capability and the Radenna SkyRadar-DX ADS-B both tie into the system via USB.  To have enough capacity, including having a panel-mounted USB jack, I needed to acquire a USB hub and the remote panel jacks that allow me to simply plug my USB stick right into the panel.

Chap 22 - 4-Port USB Hub

There are a couple industrial strength USB hubs that GRT recommends on the advice of a number of builders that have trial tested these devices.  I opted for the StarTech 4-Port USB Hub because it was significantly cheaper than the other recommended 4-port hub, it got great reviews on Amazon, and its configuration.

Chap 22 - 4-Port USB Hub

As for this hub’s configuration, you can see in the pics above that ALL of the inputs for both power and data reside on one side of the hub.  The other recommended hub had inputs on both sides of the hub.  In my opinion, having all the inputs on one side makes it easier in both mounting the hub and in managing the cabling & wiring.

As I mentioned above, in order to tie both the main GRT EFIS and Mini-X EFIS’s rear panel USB ports to the instrument panel in the way of panel-mounted USB jacks, I ordered one cable per EFIS that has a standard USB plug on one end and screw mounted female USB jack on the other.  Obviously this will allow plugging the USB stick in at the panel and give me the same capability as if I was plugging it into the back of the EFIS box.   Below is a pic of the panel side of this cable, and a diagram showing the technical specs of the cable:

Chap 22 - Panel Mounted USB CableChap 22 - Panel Mount USB


25 June 2016 — Today I finally received one of my instrument panel items that I’ve had on the list of things to buy for years now!  About a week ago I pulled the trigger on the Trio Pro Pilot Autopilot control head.  If you recall, I bought the servos from a guy off of eBay a couple of years ago and had them sent straight to Chuck at Trio who upgraded and ops checked them to ensure all was good.

LEZ Trio Propilot

This autopilot unit has the GPS Steering (GPSS) and GPS Vertical Steering (GPSV) options on it, with the GPSS allowing the Pro Pilot to receive GPSS commands from the GRT EFIS or Garmin via ARINC 429 data outputs.  The GPSV allows the autopilot to receive pitch steering commands from a WAAS GPS receiver for precision approaches using GPS.

In addition, after a lot of discussion over the years, Chuck tweaked one of the pull up resistors in this Pro Pilot’s innards so that it can receive fuel data from the FT-60 Red Cube fuel flow meter along with the GRT EFIS.  This gives me fuel management on both the EFIS and the Pro Pilot, which provides some pretty nifty fuel flow information.


25 July 2016 — It’s funny to me how I can ponder on something for a fair amount of time and then as if by putting mental energy into a concept, it reveals itself in a some what short amount of time. As with many things lately, certain discussions have fostered various thoughts about various instruments, avionics and switches on my panel.  Yet another discussion I had with Marco about his recently purchased Long-EZ –which incidentally has proven to be quite the test bed in that the handful of discussions that we’ve had concerning his new bird have spawned a number of viable system designs mods in mine– and the comment that he made on wanting to have a Garmin-free bird (due to their high prices on data updates), got me to thinking a bit . . .  but admittedly, with everything that’s been going on lately, I really wasn’t thinking that much on it!

What I had been thinking about for some time was having a GPS with a decently larger screen size than the GTN650, but one that would still fit comfortably in my panel.  In fact, I was thinking about this even more after I learned that GRT had debuted (FINALLY!) the 8.4-inch HXr at this year’s SNF.

Well, not sure if you got a chance to read Vic Syracuse’s article on the Avidyne IFD540 GPS Navigator in the August 2016 edition of Kitplanes Magazine.  All I can say after doing a bit of research for the last 3 days on this puppy is WOW!  This guy is packed with a ton of features, and in addition, its screen size falls right in between the GTN650 and the GTN750, so it looks like it will really work well for my panel size.

Avidyne IFD540 GPS Navigator

Moreover, the Avidyne IFD540 is a drop in replacement for the Garmin GNS430, so the pinouts are nearly the same as it is with all Garmin GPSs.  I spent about a half hour confirming and updating all the component crosslink pins to ensure that this would work in my electrical system’s wiring schema, and it does!  I had to change the actual pin ID numbers on about 70% of the pins (the D-Sub connectors identifying numbers are different as well), but did the swap in my wiring diagrams in short order.

[Operational Note: Currently I am NOT planning on using an Avidyne GPS navigator in my Long-EZ, but rather after much assessment and cost-benefit analysis I decided on and bought a Garmin GNS480]


25 October 2016 — Last night Marco & I fired up the GRT Mini-X EFIS for the first time ever.  Marco was curious to see how it looked and requested that we take a look, so we messed around with the screens, menus, features, etc. for a good while. We didn’t take any pics last night, but below is some of what we saw with just power and the GPS antenna hooked up to the Mini-X.

Primary Flight Display (PFD):


Navigation Maps (Track up & North up):

GRT Mini-X MapGRT Mini-X Map




6 February 2017 — If you followed my blog you know that I was on a brief hiatus from building to finish up my Instrument rating.

One reality that I had to accept in preparing for an upcoming Instrument flying stage check was my lack of understanding of the Garmin GNS430 GPS navigator, which happened to be installed in all the Cessna 172s that I was flying for training.  I had resisted in really getting deep in learning the GNS430 since for my Long-EZ, my plan was to install an Avidyne IFD 440/5×0 GPS.  But alas, with a couple of stage checks and my FAA check ride looming on the near horizon, I realized that I really needed to nug out some training on the GNS430.  This decision was made easier in part when I received an email from the ubiquitous King’s offering a 20% discount on any of their training courses.   So I pulled the trigger and bought the King GNS430/530 training course (which is pretty good by the way).

As I was just getting into the 430 training, I was thinking I would buy a 430W to install in the Long-EZ since I use it so much in my training airplanes.  With the completion of my Commercial rating still looming on the horizon, I would still require a lot of time behind the 430.  Since the Avidyne IFD440 is a slide-in replacement for the Garmin GNS430W, why not use the 430 now and simply replace it with the IFD440 later?  Sounded like a good plan.  For clarity, I discussed this at length with Marco who agreed with the merits of my logic (although being a big Iron driver, he’s not a big fan of the 430).

My GPS Navigator choice: GNS480

Although it wasn’t my intention initially, as I dug deeper and deeper into learning the GNS430, curiosity of how its features compared to other units got the best of me.  So during breaks in training I would sneak in quick peeks at the Avidyne and GNS480 features.  As I would Google certain features that I wanted more info on regarding the 430 (holds, OBS, airways, etc.) I kept coming across overwhelmingly positive reviews on those features for the GNS480 [Admittedly from those bubbas flying behind them… to the guys that hadn’t flown the 480s, the report was that the learning curve was ‘too steep,’ the interface ‘too FMS-like,’ and a constant projected fear of no further Garmin support on these units].

As my curiosity deepened, before bed one night I spent a good 45 minutes watching a video specifically on the GNS480 operations.  I was deeply impressed with the power & capability of the GNS480, and every chance I got I would spend a few minutes here and there researching it more.   After a day or so of this, I sent the 480 video to Marco with a good hunch that he’d really like this unit as well (he did!).

If you’ve ever gotten a feel for my modus operandi, it will probably not surprise you that I was already communicating with a number GNS430W sellers in line with my latest 430W plan.  However, there was an oddity playing out during my short-lived quest to acquire a 430W.  First, nearly every seller of every 430W unit that I engaged with turned out to be a scammer.  Moreover, I spent a good week working a promising deal that in the end turned out to be yet another scam.

However, I guess all things work out for a reason, because during the week I was working the potential 430W purchase with what turned out to be yet another scammer (NOTE: nearly every 430W listed on Barnstormers and other sites turned out to be a scam), I was concurrently learning more and more of the GNS480’s capabilities.  Remember, during the majority of this time I was practicing instrument approaches and studying IFR flying. Truth be told, this training was probably the tipping point in my choosing the GNS480 over the GNS430W.  Why?  Well, as I re-flew my recent actual IFR flights and approaches on the respective 480 and 430 simulators side-by-side, the GNS480 clearly had superior capabilities when it came to flying IFR flights and approaches (in my opinion).  [I’ll expound on the specific comparisons in a later post].

GNS480 Main Map Page

To be clear, with the great price (but not unrealistically low) that I would have paid for the GNS430W that I was dealing on, I would still have gladly bought it and installed it.  My requirements goal here was to install a lower cost WAAS GPS unit that allowed me to fly my Long-EZ IFR.  Nonetheless, by the time I determined that the 430W seller that I was dealing with was a scammer, I reset my search primarily on finding a quality, well-priced GNS480 unit.  Well, in short order I was able to serendipitously do just that, finding a local GNS480 seller (and experienced pilot) that had a unit for sale.

My "new" GNS480 Kit

I met with the seller, Phil, at a local airport where I was able to play around with the unit in its Commander docking station.  The fact that Phil was selling an entire Plug-n-play package was the deciding factor in why I pulled the trigger on this unit.  Here are all the components that were included:

  • Garmin checked & software updated to Vers. 2.4 and 5.1 (allows ADS-B+ out)
  • Mounting tray (“tube”), backplate and electrical & coax connectors
  • GA 35 WAAS GPS antenna
  • Data card reader + 2 data cards
  • Lone Star Commander docking station

GNS480 FPL screen...w/ comments!

A result of my evaluation, and subsequent purchase, of the GNS480 has brought me to the conclusion that this will be the final and only GPS unit that I plan on installing in my Long-EZ. Clearly this means that my proposed Avidyne upgrade is simply off the table now.  With the GNS480’s handling of voice and nav comms, its inherent WAAS GPS/VOR/LOC/ILS capabilities, and its fantastic handling of airways, I am more than thrilled to have made my decision final in identifying this GNS480 as Long-EZ N916WP’s long term GPS navigator unit.


6 August 2017 — I spent this past week in North Carolina coast and Virginia Beach.  This is significant for my build in 2 regards:

First, motivation.  Coming back from NC via  Virginia to visit Marco & Gina, Marco flew down to New Bern, NC and picked me up and flew me back to his EZ’s home base at Chesapeake.  At 45 minutes airport to airport and averaging just over 6 gallons of fuel an hour, you can bet I’m motivated more than ever to finish my Long-EZ!

Second, Spending a few days with Marco and Gina was great of course.  Since Marco is actually interconnecting all his panel upgrade components (GRT EFISs, Garmin GNS480 GPS, etc), it gave me a lot more insight on the configuration settings required to get all these panel components to talk to each other.

With all this configuration settings stuff fresh in my mind, when I returned home on Saturday I spent about 3 hours digging into the manuals to facilitate adding port speeds, port labels and IDs to my wiring diagram interconnect wires for my PFD, MFD, GNS480, Trio AP, transponder, etc.  With a deeper understanding of the ARINC connections, this process also allowed me to further find a couple of design configuration questions that I need to get some answers to.  So I fired off an email to Chuck at Trio to get some of those answers.

I continued my digression (or distraction!?) yesterday as I got close to wrapping up my panel wiring diagram by ID’ing specific wiring types (twisted pair, shielded, standard) for each cross connect.  I also created a spreadsheet that IDs all the major programming configs for my separate panel avionics/instruments.  I’ve already configured the majority of settings –as far as I can currently– on both my Garmin GNS480 GPS receiver and my GRT Mini-X EFIS.


7 August 2017 — Well, as not that uncommon in this build, what was supposed to take a few hours ended up taking up every minute of my day today and propelled itself into the wee hours of the morning.

But my immediate task is done . . .  for now of course!  I tried a few different ways to get this on the screen, but alas my JPG captures on my CAD program suck.  So I just took a screen shot (pic below).  It gives you a general idea of what I was up to all day yesterday sorting through essentially a massive pile of spilled spaghetti.

I pretty much assessed every wire and every connection coming out of the GRT HXr EFIS (PFD), GRT Mini-X EFIS (MFD), Garmin GNS480 GPS receiver, and Trio Pro Pilot Autopilot. I identified if the wires would simply be run from point A to point B, or in a twisted pair or shielded conduit, all based on the requirements coming out of the installation manuals or the manufacturer’s guidance.  Where there was no specific guidance I turned to words of wisdom from the grand pupa of aircraft electrons, Bob Nuckolls, by referencing his masterpiece, The AeroElectric Connection.

In addition I clarified some info via phone calls and emails as I did with Chuck from Trio Avionics.  And will do the same with GRT tomorrow.

As I mentioned yesterday, I also labeled every RS232 serial pair and ARINC 429 pair for the data signal wires with their respective configuration labels and correlating baud rates that will be used when setting up the individual components to talk nicely amongst themselves.  I was also able to reallocate and free up some serial ports based on my newfound knowledge and tweaking of my system (also facilitated by some updated manuals such as a new 2017 install manual for the Mini-X).  This, in turn, both reduced the physical number of wires and allowed me to clear off unneeded ports that I was tracking on the diagram above.

With the wire types identified for each port, I was then able to massively rework my Panel Quick Disconnect (PQD) connectors and consolidate all the HXr EFIS harness wires on the J4 PQD 37-pin D-Sub connector.  I was just short a couple of positions, so I moved the power off the J4 connector and repurposed the J10 connector label for a new 4-pin mini-Molex power connector (HXr primary, secondary and tertiary power plus ground).  The old J10 connector got bumped down the line and is now J12.

Below is a page out of my connector pinout tracking sheets packet.  I track literally every wire, pin & socket in every connector on this aircraft.  As you can imagine, I’m waiting for the day when I can stop updating these sheets!

In addition, I did exactly the same thing in consolidating every wire for the Mini-X through the J3 PQD 15-pin D-Sub connector.  This is very significant in that it allows me to simply unplug & remove my HXr EFIS by disconnecting only 2 connectors: a D-Sub & mini-Molex (ok, and a USB cable . . . you got me!).  Moreover, If I choose to, I’ll be able to disconnect & remove my Mini-X EFIS by disconnecting 5 things: a D-Sub, a USB cable, the GPS antenna cable, and of course the Pitot & Static connections.

After I finished reworking my panel component wiring diagram and the pinouts for the 3 PQD connectors, I then did a scrub of every wiring diagram I have on hand, which is nearly 30 diagrams.  In addition to the panel component wiring diagram, I had to do significant updates to 8 other diagrams.

To help bring all this massive paperwork drill to life so you can see it in the physical world, I went back and snagged a couple shots of the Panel Quick Disconnect (PQD) connectors in the PQD bracket (still in its rough state before cleanup) so you can see what I’m talking about.  The 37-pin D-Sub J4 HXr connector runs across the top, while the 15-pin D-Sub J3 Mini-X connector runs down the right side.  The big round 24-pin connector, which admittedly is sparsely populated now (read: scalability) is the P6 AMP CPC connector.

Here’s a shot of the PQD connector bracket at the aft right corner of the Triparagon’s top cross shelf.  The PQD bracket is situated right below the aft face of the Trig 22 Transponder.  In addition, the PQD connectors are only a scant 4.5″ (IRRC) from the aft side of the HXr and Mini-X . . . so close in fact that I could not physically install the cable clamp on the aft panel-side P6 AMP CPC connector and still have clearance to run all the wires!


10 August 2017 — Today I called Mike at ACK to go over my ELT install configuration.  He gave me some very key information that will be very pertinent to my ELT installation that in most regards will make the install much easier.


27 August 2017 — Today I started out by spending a couple of hours updating wiring system grounds and my comm component interconnections in some of my wiring diagrams.  I also figured out my Audio Mixer requirement and updated that accordingly.


11 September 2017 — I didn’t get ANY actual building done on the plane today!  Why?  Well today I got a nice delivery from the UPS bubbas . . . you gotta love people who bring you airplane parts!

Hmmm? . . . a big box from GRT Avionics.  This can’t be anything but good!

And what do we have here, 3 smaller boxes inside the big box.

Small box #1 revealed HXr EFIS accessories: GADAHRS, magnetometer, GPS antenna puck, OAT probe, and wiring harnesses.

I had already located my preprinted label stash and as each item came out of the box it got labeled with it’s 2-digit component ID.  I also wanted to check the fit of the GADAHRS on the top cross mounting shelf of the Triparagon: perfect fit!

The bigger of the 3 boxes was the GRT HXr EFIS itself. I bought the smallest HXr EFIS GRT sells –the 8.4″ model– since I wanted to conserve as much panel space as I could.  I figured it would fit well and still have exactly the same features as the large 10.4″ and 12.1″ models . . . actually more, since those models don’t have the optional touchscreen feature that I ordered on this unit!

You can see the top layer of the box contained more wiring harnesses, a thumb drive, and a display unit cross connect ethernet cable (that I won’t use since the Mini-X does not have an ethernet port… the displays will talk to each other via an RS232 serial pair).

And then I pulled out the centerpiece of my instrument panel: the GRT Avionics 8.4″ Touchscreen EFIS.  When I started this EFIS journey years ago, I’d never imagine that the unit I’d get was even more capable than what I was asking for.  I have to say that I’m extremely happy with the configuration, outlay and capability of my panel and avionics!

Here’s a shot showing the depth of the HXr EFIS.

And the back panel.

This shot gives you an idea of the actual size of the unit.  It’s not like I have gorilla paws, so this EFIS is a perfect size for a Long-EZ panel (in my opinion).

I’ll reflect back on how it is to plan something for literally years and then finally have it come to fruition.  This is my personal money shot right here.  Finally… my HXr PFD & the Mini-X MFD, together . . . where they belong!

I then opened up box #3, which contained all the wiring harnesses and engine sensors for the GRT EIS4000 Engine Information (management) System.  Since I needed a different MAP sensor that doesn’t come in any of the EIS4000 packages, I ended up getting the basic package and then just adding a couple higher quality sensors to the lineup.

And here’s the very capable EIS4000 control unit.  A lot of builders simply place this in their panel and call it a day, and it will work well that way.  But to spice things up a bit all you need is one little 22 AWG wire to port all that info via serial data into the HXr & Mini-X and you can see all the engine data in beautiful, colorful graphical representation.

I can’t even begin to relay how many phone calls that I fielded today.  So besides inventorying the new orders and crosschecking interfaces with components I already have on hand, I finished out the evening by “simply” figuring out the configuration of my GIB headrest (aka “component storage facility”) which will house the following (top down, CW):

  • Hobbs Meter
  • EIS4000 Control Unit
  • B&C SD-8 Backup Alternator Capacitor
  • B&C SD-8 Backup Alternator Voltage Regulator
  • B&C SD-8 Backup Alternator Self-Excitation Bridge Rectifier
  • Princeton fuel level control unit – Left Tank
  • ElectroAir EIS (Electronic Ignition System) Controller
  • Princeton fuel level control unit – Right Tank

(That’s all . . . at least for NOW!)

Oh, and let’s not forget the other item I also received in the mail today: my diminutive (cool in itself) MakerPlane AMX-2A Audio Mixer that allows me to take all my GNS480 system and NAV reporting messages, combine those with Trio AP audio reporting and CO sensor audio alarm, etc. and run it all seamlessly into my Dynon Intercom.  It has 10 channels so it can handle more than enough devices that I think I’ll ever throw at it.  And, as you can see, it’s literally the size of a 25-pin D-Sub connector backshell  [because it is one!].


Back to Top


Recent Posts

Project Update

Hi Folks,

I’m still working out the finer details of making everything fit inside the cockpit, specifically the left armrest currently.  I can see a very real light at the end of the tunnel for all my in-cockpit install shenanigans, and expect to be done with those in the next 2-3 weeks.  

I will be heading out of town for a couple of weeks over the Thanksgiving holiday, but shortly after I return I expect to start working on the lower engine mount extrusions and hanging the engine mount itself in prep for the engine build that will take place somewhere between mid-December and mid-January.  In addition, I’ll mount the firewall in prep for the concurrent canopy and nose builds.

So the big build stuff is coming soon! (including the wheel pants…)



  1. Chapter 22 – Video Switch Test Leave a reply
  2. Chapter 22/24 – The heat is on . . . Leave a reply
  3. Chapter 13/22 – More pilot area stuff Leave a reply
  4. Chapter 8/24 – Small layups… Leave a reply
  5. Chapter 8 – Parking brake done! Leave a reply
  6. Chapter 8/24 – Parking Brake: ON! Leave a reply
  7. Chapter 22/24 – What…more sanding?! Leave a reply
  8. Chapter 22/24 – Off the rails!!! Leave a reply
  9. Chapter 16/22 – Heater Switches Final Leave a reply