Well, an alternator is difficult to classify as belonging to ONLY the Electrical System (Chap 22) or the Engine (Chap 23), so I labeled it here as belonging to both categories.
I’ve held off for quite some time in buying my alternator, which is B&C as well, simply because I didn’t feel I had identified the avionics and electrical components within the electrical system to the degree necessary to know what size alternator I would need. B&C offers both a 40 Amp and a 60 Amp externally regulated alternator. Of course an ever-present concern of mine is weight, and at the very aft end of the engine, the 2.4 pound difference (6.1 vs 8.5) between these two alternators clearly has a decent affect on the aircraft’s weight & balance at such a rearward arm. With technology allowing me to have a lighter battery up front (15 pounds vs the traditional ‘old school’ 25 pounds), even with an extended nose I’m trying to keep the hind end of my bird light. Especially considering I’ve dumped an O-320-sized engine back there when the Long-EZ was pretty much (Read: “specifically”) designed for the lighter O-235 engine.
Have I made my case? Quite a bit of yammering over just 2-1/2 pounds, eh?! Sure, weight is evil! (I wonder if Burt would be proud of me right now . . . )
And so it is mis amigos, that I was comfortable enough in my electrical system load analysis at this point in time that I pulled the trigger on the B&C L40 40 Amp alternator below. Also, as a data point, my main bus with all the components I have listed in my electrical system will have a steady current draw somewhere around 22 amps. Not bad for a full up IFR glass panel with autopilot.
As per usual, here is a representative picture from the B&C website.