Chapter 22 – Electrical System

Chapter 22 – Electrical System Overview, Installation & Wiring
(Part 1: April 2011-December 2017)

Below are links to the major Electrical Architecture Sub-systems for this aircraft.  Much of the driving force behind splitting these electrical sub-systems out into separate web pages is that there is simply too much information for it to be detailed all on one web page. This applies both topically (system subject) and moreover in the limitations of the physical allocated space provided to each page on the server. Please be aware as you review the information that much of it is concurrent, meaning there may be multiple entries across the sub-system pages for any given day.

27 May 2013 — Ok, so today I started working on Chapter 10 – Canard; Chapter 13 – Nose/Nose Gear; and Chapter 21 – Fuel system . . . due to an error in my glassing though, my Chapter 10 piece turned into a Chapter 22 – Electrical system piece . . . as shown below.

I made a cardboard template of the shape of the canard next to the protruding antenna cables to make an antenna jack mount/cover for these cables, where they would tie into 2 respective jacks as a rather permanent fixture on the top aft/TE of the canard.  I also shaped blue foam in an effort to make this jack mount/cover.

Chap 22 - GIB headphone jack housingChap 22 - GIB headphone jack housing

Here’s the resulting form to be glassed, shown first bare & then prepped with Duct tape:


Chap 21 - Fuel tank vent manifold cap

Now, in the pic above I clearly got tunnel vision and the requirement for the contoured bottom of the wedge shaped antenna jack/cover completely eluded me . . . temporarily. Of course once the glass was laid up & peel ply applied, I realized this was not in fact going to work for what I intended it to.  Oh, well.  I just lost a little bit of time, some scrap BID and a little bit of epoxy.  In the end I got a piece that I think will work for the GIB’s headphone jack/cover.

The following pics show the soon-to-be headphone jack cover being glassed:

Chap 22 - GIB headphone jack housingChap 22 - GIB headphone jack housing

I pulled the headphone jack cover off its form & then drilled the holes for the antenna jacks (which I’ll swap them out for headphone jacks). I then removed the peel ply.

Chap 22 - GIB headphone jack housingChap 22 - GIB headphone jack housing

I installed 2 actual antenna jacks to test the fit.  Of course everything was good except there was NO CONTOUR CURVE on the bottom of the jack cover to match the canard.

Chap 22 - GIB headphone jack housingChap 22 - GIB headphone jack housing

So currently this piece is a headphone jack cover, but it may morph into something else yet to be determined.

Chap 22 - GIB headphone jack housing


7 November 2015 — Today was about research and getting reacquainted with my electrical system.  My specific interest was in figuring out what components, electrical & otherwise, that I was going to put into the nose.

Now I know a lot of my contemporary building buddies would whip up some awesome looking CAD diagram with exact dimensions down to 3 decimal places that looks like an engineer’s dream, but me being a former military “Powerpoint Ranger” and certified neanderthal, I simply added a slide depicting my thoughts on this matter onto the end of my ongoing notes for the nose build.

Again, this stuff is really just a mental thought jogger on what will most likely go into what areas in the nose, and get me thinking if there is any pre-actions or prep I can do as I build the nose.  Some of the components I ID’d will be in the nose area, but aft of F22: OAT probe, static ports, buss fuse housings, etc.  In addition, on many of the components I had to look up in my notes, emails, websites, install manuals, etc. to either confirm or research further why and how they were getting installed where.

Nose components

Now, I mentioned CAD earlier, so speaking of CAD:  The CAD program I was using to create my electrical diagrams was NanoCAD, as recommended by Bob Nuckolls in the AeroElectric Connection online forum.  This was a great CAD program for electrical diagrams primarily because A) it was what Bob used to create all of them, and B) it was FREE!  Unfortunately, my version of NanoCAD is no longer supported and apparently NanoCAD is now on Version 7, which costs a decent amount of money now to buy.

Well, no worries since I have TurboCAD, which I happened to purchase while I was in Tampa, Florida.  But I didn’t have it loaded up on my desktop so I ended up spending a good half hour loading up TurboCAD and familiarizing myself with its features before I could open up any of my electrical diagrams.  Why? Well, in a series of typical events, I had taken all the hardcopy printouts of my electrical diagrams down to my buddy Marco’s house while I was on leave from Qatar in March 2014, forgot them there, and haven’t been back to retrieve them yet . . . mainly because every time I go to visit him he puts me to work building HIS Long-EZ!  HA!  (Click here for the real story . . . )

Thus, to be able to make my annotations on my electrical diagrams on an actual sheet of paper, I had to be able to open the darn files to print them, which I am happy to report that I am now able to do.

In line with my reviewing my nose electrical components, my main preparation is in getting the nose gear actuator wiring sorted out to test it.  I had planned on going over all my electrical stuff today since the epoxy was still curing on the canard and also, in part, because my AMP CPC connector order from Mouser was scheduled to be delivered today, which it was.

I checked out all the goodies from Mouser and pretty much solidified my plan for the wiring & connections for the nose gear actuator system.

AMP CPC electrical connectors


15 November 2015 — Today I didn’t get any shop work completed.  I had planned on organizing & cleaning the shop a bit, and then getting the fuselage mounted on the dolly, but ended up working on the electrical system for about a total of 6 hours.

Although I didn’t add it to my log entry, I had actually spent a couple of hours Saturday diagraming out the circuit for my canopy & gear warning module.  I thought I was looking for a DPDT microswitch to match the one Jack had mounted on one side of the gear actuator housing for the down limiter.  The other side only has a single switch.  I even sent Jack an email asking for the part number, since all the info for the microswitches were hidden from me on account of how they were mounted with the nomenclature, etc. facing the mounting flange.  I didn’t want to move these suckers unless absolutely necessary since they’re “factory” set initially for the correct up & down limits.

Well, right before I left the house for the evening I took a much closer look to see what type of roller the microswitch had and the length of the lever arm.  Upon closer inspection I realize it had two rollers??  Wait a minute!  This wasn’t one switch!  It was two switches stacked one over the other!  Doh!  I remembered I had a microswitch included in my accessories for the speed brake, which I also bought from Jack.  I pulled that switch out, saw that it was the same switch as those mounted on the nose gear actuator, and so was able to get the manufacturer and part number off of that one. I then quickly sent Jack an email saying that I apparently need glasses and to disregard previous transmission!  All of this hassle for a $3 switch!  BTW, the switch is an Omron SS-10GL2T.

With the switch issue settled yesterday, and with the added wiring the new switch circuit will add, I was armed with the info I needed to order a new 14-pin AMP CPC connector from Mouser.  I assembled my order which included a whole lot more pins & sockets, a pin/socket removal tool and of course the Omron microswitches.

I then turned my sights on a developing order that I had with Aircraft Spruce.  I’ve been assembling this order over the past couple of weeks and wanted to get to a point where I felt I wasn’t missing anything important, like the quart of fast MGS hardener and 1″ peel ply tape that I added just prior to hitting the “submit order” button.  The order includes a lot of odd n’ end fasteners & hardware for mounting electrical components, etc. in the nose.  Of course, as luck would have it (as it always does!), a few hours after submitting the order I ran across EZ Point studs on Joe Carragio’s website while doing some research.  They’re a bit pricey, but I know of a few places where I definitely want to incorporate these. Thanks Joe, I’ll add them to the list!

I then spent a few hours on virtually organizing the components of my electrical system. Yes, in true neanderthal fashion I pulled them all out, traced their profile on a sheet of graph paper, and then identified which bus they were wired to, and looked at the length & destinations of the wire runs.  Again, since so much of this business occurs in the nose, and that’s what I’ll be building next, I don’t mind taking a few hours to get better educated on just what the nose will house before I start building it.

I made a number of annotations and tweaked/swapped/modified a number of other circuit connections simple based on location of component and the ease/requirement of access. The bottom line is that I want the guts of my electrical system to be as optimized, organized, clean, and lightweight as possible.  I don’t want a rats nest of wires that looks like the cable monster puked in the nose of my airplane and then merely shut the lid to hide the hideousness of it all!

In addition to the aesthetics of the system, I want my electrical wiring to be practical in that the configuration of it all minimizes head-scratching during future troubleshooting or component additions, and even more importantly that the RF noise is mitigated to the maximum extent possible.

After creating a ton more notes, and figuring out some important electrical system design info and component placement, my final official act of the evening was deciding that a 14-gang fuse holder would be the right size for my E-Bus.  Thus, I pulled the trigger on that as well and ordered one.

So although I have no sexy build pictures to post, I did get a ton of stuff sorted through and a lot accomplished.  And I got three separate orders in on various in-depth, technical stuff I need for this build.  Not a bad day for the build I would say.


16 November 2015 — Today was another bust on getting some shop work in. Between business calls, meetings and knocking out some personal errands, I just couldn’t get some shop time in.  One thing I could do while I was on the phone was make labels for my electrical components.  So I did.

As many of you may know I designed my electrical system so that I have each component identified with a 2-digit code, and then a 3-digit identifier for the pin, wire  or connector.  Combine this with a 1-letter designator prefix that identifies one of 12 distinct areas of the aircraft, and I then have a resulting 6 digit code that tells me exactly where any wire is coming from or going to, and the device at each end.

So as I was on the phone I simply pulled out the label maker and started going through the list of codes.

Electrical component labels

When I got a chance I would cut a few out and label the components that I have close by.  Since I was in a groove at the end of the work day, I simply rolled into digging into my stores of electrical stuff and labeling a large number of them.  I would say I have about 70% of my electrical components on hand labeled.

Since I was deconflicting and updating my electrical component ID list, this segued into my figuring out more finitely each component installation location in the airplane. I pulled out the Electrical Book of All KnowledgeThe AeroElectric Connection by Bob Nuckolls, and reviewed it to make sure I was not straying off the straight & narrow path of good electrical practices.  Especially considering that plastic airplanes amplify a lot of commonplace negative issues that crop up in wiring any airplane.

I also reviewed a lot of other builders’ electrical systems, analyzed those, and emulated a lot of good install how-to’s.  I also jotted down some crude diagrams to look at wiring runs, device locations, etc.  This involved digging out a lot install manuals and verifying a fair bit of information.

By working through what I did last night, I really feel that I confirmed and elevated the completion level of my electrical system design from about 75% to about 90%, and with just a few more minor pieces of information, and perhaps a few phone calls, I’ll be really close to locking in the final locations of nearly all my electrical components.


21 November 2015 — I mentioned that I had updated my electrical component placement plan for the nose.  I finished the final mods this morning and figured I would post it for you all to see.

Updated Nose Electrical Gear


13 December 2015 — I spent a few hours last night and a couple hours this morning making sure that I had my connector pins diagrammed out on paper.  As of right now, I have about 7 AMP CPC connectors planned for use in my electrical system: the Infinity stick grips, throttle handle switches, etc.  Each of those will have a pinout page depicting information on what wires are where & wire colors, and what connectors are being used, pins, sockets, notes and any pertinent info.  Below is the first iteration of the P2 connector. Also, in addition to the P2 connector diagram, I finished the P1 diagram.

P2 Connector Pinout Diagram

Later, while watching some football today, I took my list of wire label codes that I spent a couple hours last night researching & building to use to print out a bunch of wire labels.  I’m fairly certain that I’ve already spelled out my code schema in detail here on this site, but after I work any wrinkles and kinks out of the system, I’ll touch base on my wiring code again.

In essence, I have two 6-digit codes separated by a dash that make up a wire label and then heat shrunk to the wire in an oriented sequence to depict where the wire is coming from & going to component-wise, and what location in the aircraft the wire is coming from and going to.

Printed wire labels

Here are the wire labels cut and ready to heat shrink onto the wires.  I have them in pairs because my standard is to place a label about 6-8″ from each end of each wire.  On longer wires there may be a third label thrown on approximately halfway the length of the wire.

Cut wire labels

My first test case for the heat shrink wire labels was the landing brake wiring.  I was very impressed with the legibility of the labels and the ease & speed of the whole process from printing the labels to heat shrinking them into place.

Landing brake wire labels

Since I have the nose gear wiring harness mocked up, I didn’t heat shrink some of the wires in place.  I merely shrunk them down to a significant degree, maybe 80-90%… enough that they wouldn’t easily slide off, but that I could still slide them in their final locations (past the Adel clamps) later and then do a final heat shrink to keep them in place.

Below left is the pair of AEX power wires with incompletely shrunk wire labels, while in the right pic those labels were heat shrunk down to their final position.

Wire labels shrunk 90%Wire labels shrunk in place

Here’s another couple of pics of my wire labeling endeavors this evening.  The labels in the top pic are in their final location, whereas in the bottom pic those labels will be moved into their final position and given a final pass with the heat gun later.

Wire labels shrunk in place

Wire labels shrunk 80%


15 December 2015 — I started off today by knocking out the installation of Tee-nuts into the mounting plate of my battery contactor.   I don’t usually ascribe to using Tee-nuts as a common practice in my airplane building project, but since these bolts are metric M5 bolts, and furthermore. since I found these stainless steel Tee-nuts at that Mom & Pop hardware store the other day, I said what the heck… let’s do something the really EZ way for once!

Battery Contactor Mounting Pad

Obviously I used this scrap piece of Finnish Birch plywood when I was glassing the tabs for my main landing gear.  It’s still good, so I’m putting it to use.  I will be cutting the corners opposite the Tee nuts off at an angle to save some weight though.

I guess when my building compadres accuse me of cutting corners during this build, they’re right!!  haha!

Battery Contactor Mounting Pad

Here’s a couple shots of the battery contactor mounted to its new base plate.

Contactor mounted to baseContactor mounted to base


16 December 2015 — I was getting ready to head down to the shop today to start working on the project when UPS delivered my order of Click Bonds.

I ordered a set of four 10-32 Click Bonds for installing the EFII Fuel Boost Pump and another set of four 1/4-28 Click Bonds for installing the B&C Voltage Regulator to the aft side of F22.  The latter would be the first task of the day.

ClickBond order arrived!

I first removed the Click Bond studs from their plastic installation housings.

1/4-28 1/2" long Clickbonds

I then test fitted them on the voltage reg.

ClickBond test fit on Voltage Reg

ClickBond test fit on Voltage Reg

I sanded the upper aft area of F22 in prep of mounting the voltage reg.  I then put together a prepreg setup with 2 full plies of BID and a 2″ strip over where the left and right pair of Click Bonds will be positioned.  In the prepreg setup I went ahead and covered the BID with peel ply.

I then wet out the prepregged BID with epoxy using fast hardener, cut a small hole where each Click Bond stud would stick through the BID, and then attached the taped-up voltage reg to the prepreg setup.  I left the top piece of prepreg plastic on, so it remained between the back plate of the voltage reg, the peel ply and subsequent plies of BID.

Voltage Reg Clickbond mounting

I put a small mound of flox on each Click Bond face, added flox around the edge of each Click Bond for a transition, and then mounted the voltage reg, glass and peel ply assembly to the aft side of F22 with clamps.  I used just enough clamping pressure to keep the voltage reg in place and to firmly seat the Click Bonds.  I then worked the glass all around to ensure it was laid up well against the F22 surface.  Since there was a small gap between the Click Bond studs and backside of the voltage reg, I pressed popsicle sticks in-between the voltage reg and the glass.

As a point of note, the reason why I’m mounting the voltage reg at this point is simply due to the better access I have without the right sidewall in place.  I had originally wanted to accomplish this before either side wall was in place, although admittedly it wouldn’t have been that much more difficult to mount if the walls were in place.  But the access provided without the side wall in place did make the install easier, and makes the post cure glass trim a lot easier on the right side as compared to the left.

Voltage Reg mounting with ClickBonds

I then started working on the right nose side wall.  The right side has an extra element that must be dealt with: the 2 large power wires that traverse the fuselage from the battery back to the starter & firewall.  Since space is really tight in the nose, and especially along the sidewal adjacent to the rudder pedal, I really needed to figure out the placement of these power cables, mainly to know where to embed the Rivnuts for the Adel clamps.

I measured the diameter of the big power cables at .420″.  I then found a quick substitute for checking the spacing with an air house that measured .460″ in diameter, allowing a bit of extra diameter for some wiggle room.

Air hose as test big power cables

My initial placement of the pair of big power cables was about mid-point up of the sidewall depression, but in the end, due to spacing and clearance with rudder pedal when fully depressed, I will have to run the cables about 1.5″ up from the floor pan.

Checking power wire clearance

Later in the evening I pulled the peel ply and razor trimmed the voltage reg Click Bond mount layup as best I could with the razor knife.  Tomorrow I’ll hit it with the Fein saw to clean up the lower edges of overhanging glass.  I’ll also have to grind down about 0.1″ of each Click Bond overhanging the top & bottom edges of F22.

Voltage regulator ClickBonds glassed

After cleaning up the mounting base a bit, I temporarily remounted the voltage reg to check the fit & appearance.

Voltage Regulator Mounted on F22


21 December 2015 — When I was brushing up on brake line fittings, tubing, flaring and the like in Tony Bengelis’ books, Firewall Forward, and Tony Bengelis on Engines, I noted that he noted that there seems to be a number of “insignificant” things (my paraphrasing) that we overlook in the build until we get to them.  Probably natural, and perhaps less costly in the long run since far less money is wasted on buying things based on future prognostications.

This all affected me yesterday in a real way.  As I was trying to “simply” figure out what electrical components would reside in the nose battery compartment, and the configuration, placement, fitting of such components, I was of course referring back to my electrical diagrams.  I pulled out my lighting systems diagram.  It was old, outdated and not representative of the components I have on hand.  I updated it with my chicken scratchings.  Then I referred to my primary electrical system diagram, adding a ton more chicken scratchings and notes to the pre-existing myriad of handwritten notes. And when I say myriad, I really mean A LOT!

If you’ll note the trend, I had had enough.  I was fed up with working off of old wiring diagrams.  How old?  My primary electrical system diagram was dated Jan 2014… almost 2 years old!  I had to remedy this.  I fired up my CAD program and spent a good 3-4 hours updating four electrical diagrams in my wire book.

In my mind, I think many could claim that clearly the wiring diagram is not an overly tangible thing right now in the build considering I haven’t even finished construction on many major parts of the aircraft.  What updating those diagrams did was give me better clarity for figuring out what was going where, and why.  Again, IMO, with so little space available for the amount of stuff I’m cramming into this bird, combined with the issues that plastic birds are prone to have with those nasty little electrons, not to mention RF monsters just waiting to get nasty in our headsets, I’m really trying to optimize my electrical system as best possible.

The last thought I had on this was when I had finally decided to mount the battery buss on the aft side of Napster vs. in the battery compartment.  After I checked the fit and mocked up the buss and the relay to see where they should go, I spent at least a half an hour figuring out the hardware to use to mount the damn things!  To me, this is the stuff Tony is talking about.  A half hour sorting through screws and bolts and washers just to figure out WHAT I NEED TO ORDER!   . . . amazing!  Again, this is not stuff that comes in that giant crate sitting in your driveway, pre-configured, pre-designed and just waiting for you to mount item A to pre-drilled panel B, with screw C, washers D & E, with nut F.

But I wouldn’t trade it for the world.  Good times!

(I also spent a good hour consolidating and organizing my electrical parts containers… also something LONG overdue!)


23 December 2015 — I started today by prepping the Battery Buss & the E-Buss control relay mount pad layup that I did last night.  I’ll tell you, this small stuff is the stuff that turns into time busters, since there’s so many little steps.  And at the risk of sounding obnoxiously repetitive, that’s why I want to knock it out during the build –as well as for component planning purposes– so that I don’t end up with a completed airframe with no idea what I’m putting where!

Battery Buss & Relay mount pad

Clearly I’ve been giving my electrical system a fair amount of attention.  The main effort here with this mounting pad was to get the battery buss on the aft side of Napster (the F1-3 bulkhead) to minimize the number of wires going through Napster.  In addition, with the battery buss installed, I get a much clearer picture of where my holes need to go for the multitude of wire heading to the north end of the nose.

To get a jump on my electrical system, I went ahead and wired up the foundational wire runs between A) the battery contactor & the battery buss, B) the E-bus controlling relay to the battery buss/switch/E-Bus.

The work on the Battery Bus area included labeling the buss and the wires, crimping on the correct terminals, and confirming wire sizes and wire lengths.  Speaking of wire size, I committed a sin against Bob Nuckolls’ teachings since after reviewing my electrical wiring requirements I finally realized that I have a lot of long 14 AWG wire runs.  The feed from the Battery Buss to E-Bus is ID’d as a 14 ga wire, but since I had an extra 10 ft or so of 12 ga red wire, I used that instead.  That frees up my 14 ga wires for the really long runs where it would be a heck of a lot heavier to sub a higher gauge wire for the length of the fuselage, compared to the 2-3′ that I just did.

Below is the Battery Buss ATC fuse holder (bottom) and the B&C S704-1 relay mounted above the buss.  The large red wire heading back toward F22 is the power wire from the relay to the E-Bus, which is normally unused unless the scenario I described last night plays out where the main alternator is cooked, fried or somehow otherwise inop.

The white wire on the bottom center post of the battery buss is the 10 ga power feed wire connecting to the battery contactor just on the other (fwd) side of Napster.  This white 10 ga power wire will traverse Napster through one of the 2-3 holes that will all get drilled either below or to the right side of this new mounting pad.

Also, just an FYI for those folks not familiar with this system.  The Battery Bus is so named because it is the only buss that is always hot with live power.

Battery Buss & Relay mounted on pad

[Operational Note: As per discussion and recommendation by Bob Nuckolls after he assessed my electrical system design, I am currently NOT using the S704-1 relay shown above to control the battery bus feed to the E-Bus when the main bus power is off line.  I do still have the S704-1 relay mounted here, but now it’s being used to control & power the heated pitot tube.]


24 December 2015 — Today I test fitted the main power cables in order to finalize the locations of the cable holes transiting from the NG30 side of Napster into the battery compartment.  I wanted to get these holes drilled before I installed & laid up the floor plans in the battery compartment.

Main power cable pair test fitting

I then drilled the holes for the main power cables through Napster (not shown), and built the main 6 AWG cable that powers the Main Bus (connecting it to the battery contactor).

I started by printing out the labels for the 6 AWG main bus power cable, and also the labels for the 8 AWG cable that connects the starter to the starter contactor in the engine compartment.

Bigger wire labels

Below is a shot of the 6 AWG main buss power cable that I constructed to finalize the angle and location of the holes to be drilled for this 6 AWG main buss power cable, and the primary ground cable (black cable below) that will be paired up with the power buss cable, both coming from my electric components “tree” –again, I gave it the officious moniker of “Triparagon”– to the battery compartment.  This pair of power cables will enter the battery compartment through one of three holes that will be drilled for cable/wire runs. Actually, at least one, and maybe even 2 of these holes will technically be a pair of holes, one for each cable.  The holes will be a work in progress so it depends on how the cables & wires actually fit.

Main buss power cable


26 December 2015 — This morning I printed out the 1/2″ big labels for the black panel ground cable above, and also for the big yellow power wires that will run the length of the fuselage.

BIG wire labels

I also printed off one label for the big battery cross-connect cable that provides the power to the battery contactor.  (Later on, after mocking all the nose battery compartment components up I just couldn’t make this cable work.  Since it’s “technically” supposed to be 6″ long, and it will be more like 11-12″ long, I’m upgrading the cable to a bigger 2/0 AWG cable to allow for the impedance from the extra cable length.  I ordered the new cable this evening).

Main power connect (will get swapped out)

I messed around with the landing light to get an idea of how to mount it.  The landing light is an AeroLED MicroSun light that includes the wig wag feature. I bent the mount (that I bought separately) so that it positioned the light at an 11.4° down angle as shown below:

Landing light mount angle: 11.4 deg down

This is the crux of what I was after by messing with the landing light & the pitot tube at this juncture: the clearance & space between the pitot tube and landing light, and of course getting a handle on the wire runs for both of these components.

Spacing between lanidng light & pitot tube

Next, in preparing to cut the foam panels for the battery compartment, I wanted to get all the electrical components placed & configured.  To do this, I had to know exactly where my wire/cable runs would terminate.

I started with the B-hole (vs the A-hole . . . haha!  Some seriously LOL right now!)  On my diagram for the wire runs that I posted a few days ago, I showed that I was going to run everything through 2 holes in Napster: hole A & hole B.  Well, that morphed into 3 holes, A, B & C.  The hole I started drilling here is the new hole B.

After taping some stuff up to keep it from getting all dusty, I started with a small pilot hole from the aft side of Napster.

Main panel power +/-

And here it is on the front side of Napster.

Spotter hole

Knowing what my required diameter was, as well as my grommet size, I used a 1-1/8″ spade bit to drill this hole.

"She's Ready Captain!"

Here’s one-eyed evil Napster! [He really started getting so mouthy that I ended up sockin’ him one!] . . .

One-eyed Napster

And here’s black-eyed evil Napster!  Ha! [Or maybe the Evil Borg Napster, with that tube sticking out of the side of his cheek!]

Black-eyed Evil Napster

I then ran the main buss power cable and panel ground cable through my freshly mounted grommet.

Main buss power & panel ground cables

Below is a shot showing the proximity of the panel ground cable to the negative battery terminal.  Yes, as with many items on this plane, I bought this cable once I had “finalized” the primary components of my electrical system (Yeah, right!).  I found a way to use it though and keep both the power and ground legs to the panel just about as short as you can possibly get in a Long-EZ, barring mounting these on the aft side of F1-3 (Napster).

Proximity of panel ground to battery post

Here’s “the Bridge” that is made up of the main buss power & panel ground cables that will be supported on each side with an Adel clamp.  In addition, I’ll be using a high end type of shrink tubing that will really add rigidity and strength to this “cable crossing.”

Main Buss, E-Buss & Panel Ground Cables

As you can see, the 12 AWG red E-buss power wire coming out of the Battery Buss Relay (mounted on the aft side of Napster on the right in the above pic) will jump aboard with these 2 big cables coming out of the battery compartment.  Currently, these 3 cables/wire will be all that is in this run and held in place by these specific Adel clamps (3 total Adel clamps within the NG30 area).

[Operational Note: As per discussion and recommendation by Bob Nuckolls after he assessed my electrical system design, I am currently NOT using the S704-1 relay shown above to control the battery bus feed to the E-Bus when the main bus power is off line.  I do still have the S704-1 relay mounted here, but now it’s being used to control & power the heated pitot tube.]

Main Buss, E-Buss & Panel Ground Cables

I then started in on the really Big power cables that run the length of the fuselage.  I took the two 1/2″ holes that I had drilled previously and cut out the center divider and made them into one big hole.  (Yes, this is the “Big A-hole” … haha!).

I spent a good half hour using my Perma-Grit tools and my Dremel Tool to get this thing into a big enough oval so that it would accept the grommet that I bought at an auto parts store tonight.  (BTW, I had to modify both of these grommets to get them to fit.  I widened the groove on the top grommet for hole B by about 0.060″, and on this one I did a little bit of creative reshaping as well, mainly on the edge that mated with the interior side of the hole).

Hole & grommet for big power wires

Here’s a shot of both “grommetted” holes tonight.

"Holy" Napster!

I took the pic on the right first, but it’s a tad blurry, so I backed up a bit to get it to focus better.  Clearly I decided to post both pics for your viewing pleasure!

Hole & grommet for big power wires

Hole & grommet for big power wires

[Operational Note: As per discussion and recommendation by Bob Nuckolls after he assessed my electrical system design, I am currently NOT using the S704-1 relay shown above to control the battery bus feed to the E-Bus when the main bus power is off line.  I do still have the S704-1 relay mounted here, but now it’s being used to control & power the heated pitot tube.]

I then ran the big power cables through their Adel clamps & through the hole & grommet to ensure they fit.  In addition, I was also looking to ensure that they played well with the other wires that have to traverse Napster via the same hole (I’m talking about the Battery Buss power lead & the SD-8 backup alternator power lead … which is fed by one of the leads coming off the inline fuse in the pic below).

Finally, please note the faint horizontal pencil line in the pic below.  This line represents the minimum install height of the battery compartment floor pan.  Clearly I’m going to have to dish out a small area to make allowance for the big power cables and the grommet.  THIS is exactly why I’m getting this stuff situated, so I can plan out how I need to configure and build the battery compartment bottom & side foam panels.

Big wires through Napster

As you can also see, I labeled the top big cable (I’m only using one big cable folded in half for these test fittings, so clearly I’m not going to mark the other side).  I thought I’d get a long view shot of the cables in place against the nose side wall.

Long view of big power wires

And a close up shot of the big power cables traversing Napster’s domain.

Aft Napster view of big power wires

I took this shot more from the perspective of what would be seen when the nose hatch is open.

Side shot of big power wires

I played around with the 30 amp inline fuse that sits at the head of the power line for the B&C SD-8 backup alternator (the PM alternator mounted to the engine vacuum pad).

After deciding on a final location, I drilled a hole for mounting it.  However, I didn’t actually mount it until I finished drilling the bulkhead hole C, as you can see in the right pic below.

Wires galore!

Backup alternator fuse mounted & new hole!

Here’s a closer shot of both the new hole C and the mounted 30A inline fuse.  Hole C is where the majority of wires from the battery compartment and nose tip will exit points north and head back to the vast collection of electrons that will reside in, around & near the Triparagon (electrical component “tree” feeding nearly every device in the aircraft).

Backup alternator fuse mounted & new hole!

I drilled hole C exactly 9/16″ in diameter since I do not have a grommet for it on hand, but this hole diameter is exactly what’s required for the grommets I have Teed up & ready to order from McMaster-Carr.

Last hole in Napster

I learned that I’m going to need to position the battery contactor in a slightly different place, and in a slightly different orientation, to greatly facilitate all the power feeds to & from it.


27 December 2015 — Here are a couple shots showing the dished out areas of the floor pan for both the big wires and the inline fuse, which I mounted to check fit.

Tweaking right floor pan

Tweaking right floor pan


28 December 2015 — Today I spent a good 45 minutes cutting the glass from the bulkhead cable access holes that where drilled through Napster on the right side.  On the hole for the big cables especially I had to do a fair amount of trimming and sanding to get the grommet to fit.  Actually, I also had to trim a little bit more off of the grommet for it to fit.

I then remounted the 30A inline fuse to ensure it fit, which it did fine.

Checking component fit after floor inst

In addition to simply remounting the inline fuse, I quickly set the battery in place to double check that the clearance was good between the two.

Checking component fit after floor install

After cutting the right side panel and sanding it to fit, I mocked up both panels to verify the fit of the battery.

Checking right sidewall & battery fit

Checking right sidewall & battery fit

I then got to work on finalizing the installation location & orientation of the battery contactor. As I’ve said literally a gazillion times, there is not a lot of usable space in the nose, and the battery compartment is big enough for all the stuff I’m putting in there . . . just barely.  Also, to atone for my sins of dishing out the NG30 compartment nose side panels, I’m leaving these battery compartment side panels straight, primarily since I have no reason or requirement to dish them out.

Testing different orientations for contactor

After playing around with the contactor positioning a bit, which included a constant in & out with the main battery, I figured out where it needed to go.  Below is a shot of the final contactor installation spot.  BTW, if you’re connoting aloud to the computer that I clearly have no idea how to install a contactor if I’m mounting it sideways, then I’m happy to report that that’s exactly one of the primary reasons why I’m using the Gigavac GX-11 battery contactor.  Not only can it be mounted in literally any position, but it also consumes less than a 1/10th of an amp to keep it closed (vs the normal 1 Amp draw).

Found a spot for the contactor!

This wasn’t my first choice or preferred orientation of the contactor, but it will work fine.  It did cause me to have to bring the big power cable forward and loop it back in order to get the cable’s connector angle correct.  This of course mandated securing the long length of cable to the sidewall.  Another Adel clamp.

Determining contactor final mount spot

The contactor mounting location exercise, and subsequent requirement for an Adel clamp, got me to assess my cable management requirements.  I would be bringing wires in from the very front of the nose, from 2 lights, a heated pitot tube, and the gear back-up battery, in addition to mounting my TCW IBBS on the left side of the battery compartment.  These all add up to a fair number of wires in & around the battery compartment.  Clearly it would be grossly irresponsible of me not to keep these wires under wraps (pardon the pun!).

So, as I was prepping the left side panel for its install onto the nose, I added another Rivnut to the lower side panel.

Then, to get the orientation of the Adel clamps aligned parallel to the wire runs on the front & aft side of the battery, I drilled 3 Rivnut mounting holes into the edges of the BC1s where I had determined that I would need them.

Drilled edges of BC1s for RivNuts

I then started working on the battery contactor mount.  I first cut off the corners of the 1/4″ Finnish Birch plywood (same that’s used for the firewall) mount in which I have the M5 Tee Nuts installed.  I then used the plywood contactor mount as the template to cut out a 1/4″ deep cutout in the foam sidewall.

Contactor mounting plate cutout

Once the cutout was good, I cleaned it out, whipped up some flox and mounted the battery contactor mounting plate in place.

Floxing in battery contactor mount


29 December 2015 —Today, after cleaning up the right battery compartment side panel layup, I test mounted the battery contactor.

Battery contactor screwed to mount

And then test fitted the right battery compartment side wall with the contactor mounted in place.

Checking battery contactor fit

Checking battery contactor fit

I drilled out the holes in the contactor mounting plate and then mounted the contactor.  Before mounting the contactor I terminated & labeled the 30 Amp inline fuse wire and the control leads on the contactor.

In addition, I attached every wire & cable to the lower terminal that will actually be mounted in the final configuration to ensure that all the wire runs are good.  The only thing I could improve upon here is to cut the lead wire form the 30A inline fuse down an inch or two.

R side wall glassed & contactor mounted

I then checked the fit of the battery with the contactor bolted into place.  I was very pleased with the clearance between battery & contactor since it was even about 0.070″ more than I thought it would be.

Testing battery & contactor fit

The space on the right side of the battery is a bit tight due to the 3 big cables all trying to get through that narrow space: the 2 big power cables going to/from the firewall and the main power lead from the battery to the battery contactor.  It’s definitely crowded, but not unworkable or impossible.

contactor mounted & battery fits

Here’s a shot of the cable & wire runs to/from the battery contactor.

Battery contact mounted


14 July 2016 — I would say one of the big electrical system breakthroughs I achieved over the past week is taking the stock ON-NONE-(ON) toggle switch located just to the left of the china hat switch on the Infinity stick grip, and making it work to suite my design goals.  I wanted it to control my COM1 ↔ COM2 radio swap [COM1 = Garmin GTN650 & COM2 = GRT HXr EFIS-controlled Trig TY-91] and wasn’t past swapping out this switch if I needed to, but I definitely wanted to make it work if possible.  In my monkey brain I intuitively “knew” when I bought these sticks from JD that I should be able to design what I wanted circuit-wise.

With that extra momentary ON position when the switch is toggled aft, I wanted a way to use that switch for controlling the frequency flip-flop for BOTH radios, as well as the COM1 ↔ COM2 radio swap.  This is where digging into the installation manuals and discussing with GRT really helped, since there is no remote freq flipflop feature on the GRT HXr (this is accomplished with a button on the right side of the EFIS).  Since the inherent features of the GRT HXr EFIS removed the remote freq flip-flop feature off this switch’s ‘to-do’ list, I was then left with my COM1 ↔ COM2 radio swap requirement, plus controlling ONLY the COM1 freq flip-flop.

Infinity Stick Switch

As a point of clarification, remember that Garmin doesn’t allow third-party vendors (AKA GRT) to remotely control their radio functionality through a separate component like an EFIS (yes, there are remote functions via switches/buttons and some SL30/SL40 command features, but not full control of the GT650/GNS430 communications functions). Thus, my setup is the Garmin GTN650 (COM1) as a separate radio controlled totally outside of the GRT realm, and then a remote Trig TY-91 transceiver (COM2) controlled via the GRT HXr EFIS.  The sound and headset features of both of these radios are controlled via a Dynon Intercom.  It is the COM1, COM2 select feature of the Dynon Intercom that the stick mounted toggle is controlling.  The COM1 freq flip-flop is wired directly to the GTN650.

Utilizing a relay, my design functions such that COM1 is always the default com radio unless the switch is pushed forward, thus driving the relay switch off the N/C (normally closed) COM1 side to the N/O (normally open) COM2 position.  Since I control the COM2 radio freq flip-flop on the EFIS there’s no issue with not having the COM2 flip-flop feature on the stick toggle. Obviously, in the default COM1 position –which I’ll be using 80-90% of the time– engaging the toggle switch in the MOMentary down position has no effect on COM1 ↔ COM2 radio selection.

Ok, so I’m extremely pleased with this setup since it perfectly matches the capabilities of my planned panel components.  One issue resolved, 287 more to go . . . . ha!

In the pic below you can see my inventory and ID’ing ALL the switches I have on hand. Since I had some extra switches that I got from JD when I bought the Infinity stick grips, I was checking out the weight of the larger Carling (B&C) switches vs the smaller toggles. If you’re curious: 3 B&C switches weigh around 0.18 lbs vs. 3 mini-toggles weigh about 0.04 lbs.  As you can see, I am reassessing my panel switchology and trying to attain some weight savings where I can.  I will say that using mini-toggles adds time and complexity to the electrical system build since those switches must be soldered in vs the nice FastOn connector tabs incorporated on the B&C switches.

Switch inventory & planning

I also knocked out some of the more background tasks for both the electrical system and in prep for getting back to the build.  I made a run to Harbor Freight and stocked up on some supplies.  And as I was out and about I got a battery for my ever-trusty & ever-present epoxy-laden build WATCH, and got it back online.  And I stopped by FedEx to buy a long 12 ft length of 48″ high plotter paper to lay out and start designing my wiring harness in real dimensions, later on when time allows.

Finally, I spent about 3 hours last night finding/researching/purchasing replacement mini toggle switches, and submitting a decent-sized order with Mouser.  These orders bring me current for all the outstanding bits & pieces (resistors, relays, AMP CPC connector, switches, pins, sockets, etc.) that I need up to this point for my electrical system build.


21 July 2016 — Since I’m making the throttle handle removable I’ll be running all the wires through a 24-pin AMP CPC connector–the same style connector that I used on the nose gear actuator connectors where I swapped out the stock Molex connectors.  On the throttle handle I’ll be wiring all the switches with new wiring and swapping out the old stock circular Amphenol Mil-Spec connector with the much lighter and cheaper TE Connectivity AMP CPC connectors.

24-pin AMP CPC connector vs old

After removing all the existing electrical potting material and then stripping all the throttle handle switches of the myriad of resistors and capacitors, which created a near-impenetrable labyrinth around the back side of each switch, I was able to tone all the switches out.  I was pleasantly surprised to find that I had mistakenly ID’d the bottom toggle switch as a SPST switch rather than the DPDT switch that it actually is.  I had already targeted an $80 OTTO replacement switch for this position, but after this latest round of investigation I can belay that order and use the stock switch for my Landing Brake!

With my throttle switches clearly identified, and the wiring to & from each switch, I could then marry up my initial throttle switch diagram with the 24-pin AMP CPC connector and finalize the throttle handle’s P4 connector pinout diagram.

As for wiring diagram 13 depicting the wiring for all the 6 throttle handle-mounted switches, below left you can see the initial draft versus draft #3 in the right pic below.

Throttle Handle Switches

Throttle Handle Switch Wiring via P4

I knew that the top left throttle handle switch that was clearly designed for a specific F-15 system was not going to work for my application.  This switch is nearly heavier than all the other switches combined and in my estimation is probably a good 30% of the stock weight of the throttle handle as it was shipped to me.  I pulled this switch and then spent a fair amount of time identifying its replacement.

Removed F-15 throttle handle switch

And here’s what I came up with: the OTTO T5 mini trim switch.  The more complete description is a commercial grade 4-way plus center pushbutton trim switch.  The pic below is a stock photo off the Mouser website.  In actuality, the switch I ordered does have the “stadium” grips on the top as this pic shows, but it differs in that my switch is gray and it is press fit vs. threaded mounting.  If you’re curious about the switch assignments, here they are:

  1. UP – Trio Autopilot Fuel Information Screen Cycle
  2. DOWN – AFP30 Air Fuel Data Computer Screen Cycle
  3. LEFT – GRT HXr EFIS Page Flip
  4. RIGHT – Garmin GTN650 NAV Source Select
  5. CENTER – Garmin GTN650 CDI Source Select

OTTO T5 Mini Trim Switch

As for the other Throttle Handle Switches, here’s the layout:

#1 – Outboard Front – 5-Position Mini Switch (described above)
#2 – Inboard Front – COM PTT
#3 – Inboard Side Top – COM1 Freq Flip-Flop
#4 – Inboard Side 2nd Down – Nose Gear UP/DN
#5 – Inboard Side 3rd Down – A. Remote Start Arm   B. Trig TT22 XPDR Ident
#6 – Inboard Side Bottom – Landing Brake UP/DN

Throttle Handle Switches

Alright, moving on!

As I was reviewing the P-connectors pinout diagrams, I set about to confirm some info on my P3 (Trio autopilot pitch servo) & P7 (Trio autopilot roll servo) connectors.  For some reason our good friends building non-TSO’d products for our birds typically use auto grade Molex connectors.  Being a true disciple of Bob Nuckolls, and having had other discussions with some smart bubbas on this topic, I am simply (and clearly) not a fan of Molex connectors.  Especially for the autopilot roll servo which will be located on the back of the center section spar in the engine compartment.  I want more environmental protection for this connector.  So, my dear friends, I was confirming the wire colors and pinouts on the P7 connector with the Trio install manual–since I had just ordered a reverse sex 4-pin sealed connector (so that it was physically impossible to connect up either servo in the wrong spot) on my last Mouser order– AND that’s when a disturbing question popped up concerning both the P3 connector, and the pitch servo.

You see, I had incorrectly ordered a 4-pin connector for the pitch servo in my haste to get all the required electrical pieces parts in hand.  It didn’t require any O-ring seals since it was in the avionics bay, so I simply pulled the trigger.  But while reviewing the Trio autopilot installation manual wiring diagram, I realized I had forgotten about the 2 extra wires coming from the pitch servo for the Auto Trim feature.  But why had I forgotten these wires?  I then pulled the pitch servo out and –what?!– only 4 wires!  Hmmm, maybe they were tucked inside the servo since this was an “optional” (key word here folks) feature.  I pulled the cover off the servo, and no joy.  There was not an extra pair of wires or connection points inside this servo.  Ok, what’s going on here?

I went to Trio’s website, and I still got the impression that the Auto Trim feature was a standard feature of Trio’s Gold Standard servos and merely labeled as “optional” since the builder had to add a relay, bridge rectifier and wire it all up for it to work.

Trio Autopilot Pitch Servo

I called Chuck at Trio to ask him about this latest puzzling revelation.  He and the Trio gang were just getting ready to head out the door to Oshkosh, but he took the time to have a detailed conversation on the status of my pitch servo.  So here’s the deal: A few years ago the Auto Trim feature was an actual priced option for the Trio Gold Standard servo. However, they decided to simplify production and simply make the Auto Trim a standard feature on the pitch servo, yet still optional as to if the builder/owner wanted to utilize it or not.  Since this was my impression all along, it never entered my brain as a data point when I bought these servos from a fellow homebuilder (Rans S7 I believe) off of Ebay.  If you recall, I had the servos sent straight to Trio who made one engineering upgrade, ops checked the servos and then sent them on to me with the install kit required for a Long-EZ. All was good!  Or, so I thought.  Hmmm…

Trio Autopilot Pitch Servo

Okay, lesson learned!  The money I saved on buying these servos off of Ebay has been reduced to virtually nil now that I’ll be sending the pitch servo back to Chuck, along with a couple hundred bucks, to have the Auto Trim feature installed.  All in all, no big deal.  I’m just glad I caught it early on.  And I guess technically this was two Oops since I also had to spend $10 to include all the pieces to make up a 7-pin AMP CPC connector on my last Mouser order!  [Note: I’m using a 7-pin connector since they don’t make a 6-pin.]


12 August 2016 — Today I got my Trio Pro Pilot autopilot pitch servo back from Chuck at Trio Avionics.  As he said he was going to do he upgraded my pitch servo with the Auto Trim feature.  And in short order too!

Here’s the pitch servo before I sent it to Trio.  Note that there’s only 4 wires coming out of the servo.

Trio Autopilot Pitch Servo

And here’s the pitch servo after the Auto Trim feature was added.  Note that there are now 6 wires coming out of the servo, the 2 extra obviously being for the Auto Trim feature.

Trio autopilot pitch servo

As an aside to this story, the US Postal Service gets a ding (pardon the pun) against their service in my book, considering that as overpacked as I had that servo in the box that Trio had sent out my autopilot control head to me, the Post Office still managed to crush the box and damage the bottom plate of the servo!  Luckily there was not such damage on the return trip.  Here’s the damaged bottom plate that Chuck threw in the box when he shipped the servo back to me:

damaged pitch servo plate

Still, no worries and all is good.  One more item off the list and I can move on to the actual build . . .


20 August 2016 — During the last week I have been doing some odd & end stuff on the build, much of it stuff I was never able to really put together before since I didn’t have all the pieces parts in the same location.

Canopy Latch: A note that I’ve had for a while in the middle of my electrical switch diagram states to account for the panel space required by the canopy latch arm that sticks out horizontally into the space near the throttle handle.  I became acutely aware of how much space the canopy latch was really taking up when I sat in my buddy Marco’s Long-EZ specifically to note clearances, required reach to cockpit items/switches, and simple ergonomics.  It emphasized that the note on my switch diagram truly had merit, and that I must indeed account for this most necessary but intrusive component.

Thus, back at my hacienda, I finally got around to pulling out the EZ-Rotary Canopy Latch kit that I bought from Jack Wilhelmson (  I first (re-)inventoried all the parts to ensure I hadn’t lost anything over the years.  I then did a quick (re-)review of the installation procedures to get a feel of what I was up against.   My main current concern was of course the clearance with the instrument panel, and luckily with this setup the bearing block hangs down from underneath the longeron, and not straight out from the panel, thus giving me back the 3-4 square inches that I wouldn’t have been able to use on my instrument panel if I had installed the plans version of the canopy latch.

Pitot Tube Electronics & Components: Starting back in the beginning of 2013, my buddy Marco and I started brainstorming on a heated pitot tube design for our Long-EZs. Recently, Marco has been doing some truly amazing work on the electronics that drives the pitot tube heat.  In preparation for the electrical components that he’s developed for the pitot tube, I recently purchased another airspeed switch, and a new 3-position ON/OFF switch that has a momentary ON position in the farthest up point to reset the electronics if need be.  Marco has been detailing a lot of this on his phenomenal blog, What have I gotten myself into!

Control Stick Button Role Refinement & Swap: While down in Virginia Beach getting my first Long-EZ ride from my Marco, he at one point recommended that I swap my alarm momentary shutoff (left side of stick) with my A/P disengage & Pilot Controlled Steering (PCS) button (upper right of stick) on my control stick.  Well, I have to admit that I was a little resistant at first, but after pondering the idea and getting into the Trio Avionics Autopilot manual (and really finding out the advantages of using PCS), I actually had an epiphany while driving home one evening: since the top right button is the hardest to reach on the stick, then why not use it to control something that I will use very occasionally in the air, and almost exclusively on the ground.  Whereas with my new found understanding of PCS, I am confident that I will use that much more while flying.  Thus, I wanted the A/P button in a much more user friendly place on the stick, so of course I swapped them… which is simply code for I changed the CAD drawings for both the buttons’ electrical wiring connections.  Nonetheless, thanks again Marco for setting me straight!  ha!

Here’s a pic identifying my current Infinity control stick button & switch assignments.

Infinity Stick Switch Assignments

AG6 Warning Annunciator (#2): As I was getting a bunch of these ‘final’ items squared away before jumping headlong back into my build, I submitted parts orders with B&C, Mouser & Aircraft Spruce.  Part of my order with Mouser was a direct result of my discussion with Rich from, who gave me a bunch of great info on the AG6 warning annunciator.  To drive a myriad of warnings that would normally require an LED on the panel, I ended up calling a number of vendors to confirm the correct resistor values & wiring circuitry to use with their specific products.  Once I had the recommended resistor values in hand, I fired off an order to Mouser for all of them.  That also helped me to finalize which of my components would/could utilize the AG6 to annunciate an alarm condition.  One thing was certainly clear after I figured out what-was-going-where for my alarm annunciations, and that was that I didn’t have enough “where” to go to!  I needed another AG6 to handle the increased number of components connected to the AG6(s) to annunciate their alarm conditions, so I ordered a second one.

AG6 Warning Annunciator

The missing 2-Amp Circuit Breaker!  One day last week as I was updating my electrical system diagrams I ran across the 2-Amp inline fuse for the SD-8 backup alternator activation switch on the circuit diagram.  As I was assessing that switch specifically, for some reason the inline fuse didn’t seem like the right fit.  I pulled up the B&C install manual and sure enough it showed a 2-Amp circuit breaker, NOT an inline fuse! I then went back through the last couple of versions of Bob Nuckoll’s Z-13/8 system architecture diagrams and…NO inline fuse!  “Huh?!” sez I, “Where did I get the idea for placing a 2-amp inline fuse there?”  Well, I finally found it in an old version of the system diagram that I had started with back in 2012! I guess it pays to review, or, well, it actually costs money since I had shell out some more to buy a 2-Amp Circuit Breaker.  Regardless, I’m just glad I found my oversight & corrected it ‘early’ on.  By the way, this scenario is exactly why I’ve been critically assessing literally every component in my electrical system!

Electrical & Aircraft Component Weight:  Upon receiving the new 2 amp circuit breaker and AG6 warning annunciator I decided it was time to spend a good hour to update my estimated aircraft weight worksheet.  I added all the new components, eliminated old ones, and weighed a number of components that until previously I only had factory listed or estimated placeholders for.  When I finished, my Long-EZ had gained 10 lbs, with its new estimated weight still just under my max goal weight of 1,000 lbs… but just barely! And by barely I mean less than a pound under.  The good news is that I have a lot better idea of what is going into my airplane and now have hard weight data vs. estimated/unknown data variables.  Obviously, since I now have a lot of this stuff on hand, I can get the actual weight of each item.  Moreover, I have padding built into the weigh figures for the electrical system, avionics/equipment, and main airframe components.  Thus, I suspect to be somewhere near 1,000 lbs. for my final weight, ± about 30 lbs. (yes, yes, more likely plus than minus!)

Integrated Backup Battery System (IBBS) model selection:  One thing that I did in the planning of my future components order is to mock up the fit of my TCW Technologies IBBS in the nose where I plan to install it.  After a discussion with Marco on the W&B on his new Long-EZ, I figured a pound of extra weight gained by moving up from the 3 amp hour IBBS unit to the 6 amp hour unit would actually be beneficially.  However, there’s just one problem with moving up to the bigger 6 AH IBBS unit: it won’t fit in my planned location!  No worries though since the original 3AH IBBS unit that I had initially decided on will work, so back to square one.  Another decision crossed off the to-do list.


11 September 2016 — Today after my Sunday visits and watching some football I decided to work a few lingering side jobs that needed to get done.  The first item on my list was a small base tray for the battery.  I have a strap to keep the battery secured in the nose, but it still can slide just a hair from side to side.  I want to ensure the battery stays put, so I’m going to make a tray about a 1/2″ high to keep the bottom of the battery exactly where it needs to be.  And I do mean “exactly” since space is tight in the nose.

I took the battery out of the nose and removed the posts.  I then taped over the posts to keep them clear of any nasty stuff.

Prepping Battery for glass

Here’s a shot of the nose with the battery removed.

Battery Removed

I then wrapped the battery in plastic (saran) wrap, with tape over top of that.

Prepping Battery for glass

I then grabbed my Integrated Backup Battery and pretty much did the same thing.  The IBBS is item #2 on my list tonight.  I’ll be floxing the Clickbonds in place on the face of the Napster bulkhead for the IBBS to mount to.

IBBS gunk protectionPrepping for Clickbonds

After I got the IBBS protected from any potential gunky stuff, I then punched holes through the bolt holes in the flanges on each end of the IBBS box and inserted a Clickbond.  You may be able to see that I quickly ran each Clickbond along the face of my 32 grit sanding board to create some nice grooves in the metal to provide a little better gripping action for the flox.  My final prep action for the Clickbonds at this point was to hit each one with some Acetone to ensure they were spiffy clean for good adhesion for the flox, and to the bulkhead.

IBBS Clickbonds in place

With the IBBS ready to go, I then prepped the glass for the battery tray.  Since this thing isn’t going to be seen, and just needs to be reasonably strong, I went ahead and just pulled out some glass from my scrap pile.  I used about 4 pieces of BID on the first layer, overlapping about a 1/2″ on the seams, then a layer of UNI (because I have a TON of UNI scraps!) and then a final third layer of BID made up of 2 single plies simply butted up against each other at the diagonal seam.

Scrap glass-Battery tray

I then whipped up some MGS 335 epoxy and wetted out the glass.  After the glass was nice and wet all the way around, I peel plied it.  To really get the sides to stay tight against the battery, I went ahead and wrapped the edge with duct tape the entire way around the battery (sorry for the blurry pic).

Battery tray glassed

I used a small amount of the epoxy to whip up some flox and then dabbed some small blobs of it in the middle of each Clickbond, after very lightly wetting each Clickbond surface with epoxy.

Flox on Clickbonds

Here’s the initial shot of the IBBS unit getting clamped into place.

Installing IBBS Clickbonds

And here’s a few more shots of the IBBS unit clamped into place to ensure the Clickbonds cure in place.  I’ll let the flox cure overnight, and tomorrow I’ll add 2 plies of BID over the click bonds to secure them in place.

Installing IBBS ClickbondsInstalling IBBS ClickbondsInstalling IBBS Clickbonds


12 September 2016 — Today was a heavy prep & work day in regards to finishing up my miscellaneous tasks from yesterday . . . so let’s get to it!

The battery tray was nice & cured this morning…

Battery tray cured

So I pulled off the peel ply, then the protective tape on the battery itself.  I then worked the battery tray off the battery.

After I got the battery tray removed (and yes, it’s a tight fit!), I then pulled the tape from inside the battery tray.

Battery tray tape removal

The result was nice in that there was no SNAFUs!

Battery tray ready to trim

I then quickly set the battery back in the tray to test out the fit… nice & snug!

Battery tray test fit: Good!

In my expert opinion (ha!) I’d say the tray looks a bit rough, so I marked it up for some trimming.

Battery tray marked for cutting

I also marked the tool box for trimming as well.

Tool box ready for trimming

I then grabbed my Fein saw, the battery tray and the tool box and took them all outside for a trim.  Here’s the result:

Battery tray & tool box trimmed

I’m really happy with the way the battery tray turned out.

Battery tray ready for install!

As for the IBBS Clickbonds, below are some shots of the IBBS being removed from the floxed-in Clickbonds.

IBBS Clickbonds floxed in placeIBBS Clickbonds floxed in place

I then sanded all around the Clickbonds and cleaned them up to ready them for the 2-ply BID layup.

IBBS Clickbonds sanded

Here’s the BID layup that extends about 1″ from each Clickbond stud.  I also peel plied the glass to give a good transition.  To make it “form fitting” for the IBBS unit, I put the pre-preg plastic back in place.

IBBS Clickbonds with 2-ply BID

I then reset the IBBS unit and clamped it back in place like I had it last night.  This will ensure that the BID immediately around the Clickbond posts lays down nice, flat & tight.

Remount IBBS for press fit Clickbonds

I then checked on the cure of the IBBS Clickbond glass.  The epoxy was pretty much cured, so I very gently popped off the IBBS unit.  Here’s the final shot of the IBBS Clickbonds glassed into place.

IBBS Clickbonds install complete

And here’s a trial mockup of the IBBS to ensure nothing is jacked up (which nothing was!) and to confirm clearance of the wiring harness & connector.

IBBS Clickbonds install complete


16 October 2016 — Today I decided to swap out the wiring connector on the Trio Pro Pilot Autopilot from a Molex connector –which by now you probably know that I don’t care for– to an AMP CPC connector.

Trio pitch servo wiring

I started by removing the individual Molex pins from the Molex connector housing.

Trio pitch servo - Molex removed

I then cut off the Molex pins from each wire.

Trio pitch servo - connectors removed

I added a couple of pieces of shrink tubing both at the strain relief point coming out of the servo housing, and another piece that will end up close to the connector.  This latter piece will not only serve to help with strain relief, but also to maintain a good bit of twist in the wires for dampening any errant electromagnetic radiation.

Trio pitch servo - prepping wires

I had spent a good half hour confirming & updating the wiring schema from the Trio Pro Pilot manual. However, I didn’t confirm my original claim of pins vs. sockets on my sheet. My bad since I went with pins here, when I should have installed sockets.

Trio pitch servo - AMP pins installed

No big deal.  Normally pins or sockets wouldn’t matter, but since my pin side connector body has a flange on it, I had originally meant for it to stay hard-mounted in the aircraft, while the servo side connector would be removable (no flange).  It will mean just a slight modification to the mount on the side wall of the fuselage, meaning although this connector will be screwed in place it will also be easily removable.  I’d much rather do that than cut off perfectly good (and crimped!) pins and waste time & money for a slight re-tweaking of the P3 connector installation.  I mean, after all, how often am I really going to be removing & installing the pitch trim servo after it’s initially installed? (not many I hope!)

Trio pitch servo AMP CPC connector


14 November 2016 — I should state that part of my fit & finish testing for the Triparagon includes the B&C Voltage Regulator, which is not actually mounted on the Triparagon, but immediately forward of it on the aft upper side of F22. So I started out today by also wiring all the connections from the Voltage Regulator to Triparagon components.

The long pole in the tent for the Voltage Regulator wiring was the wires coming off of pins 3 & 5, since they both connect to main buss power and pin 5 drives the warning signal to the AG6 warning annunciator.  The warning circuit required a 1K ohm resistor which I soldered into place.

Voltage Reg sensing and annunciator wires

Here you can see the 1K ohm resistor soldered into place, and the heat shrink in place on the respective wires to help build wire thickness for physical joint strength when the final piece of heat shrink is put in place.

Volt reg resistor for AG6 warning annunciator

The final heat shrink tubing in place over the resistor that’s tied in between the voltage regulator’s pin 3 & 5 wires.

Voltage Reg wires heat shrinked


16 November 2016 — I didn’t get a lot done on the actual build today, although I did get a TON of administrative tasks done for my electrical system.

First off, I’m going to reiterate the emphasis and importance that I place on the electrical system.  Finalizing significant portions of the electrical system may definitely not be as sexy as seeing significant portions of the plane go together, but it in my opinion it is critical for many reasons.  First, if the airplane is an aerodynamic housing for these systems, it makes sense to me to know how these electro-whizzies are going to FIT inside the housing before the housing is completed!  Second, it is infinitely easier to work on fitting those electro-whizzies into place before the housing (eg fuselage, strakes, nose, etc.) is completed.  In addition, it’s nice to be able to track the weight of these components, instruments & avionics to allow for a weight cost-to-benefit analysis of each specific component.  There are at least 2 electrical components (StrikeFinder & fuel vapor sensor) that I’ve eliminated from my system simply because the cost in weight to have these installed is simply too high compared to the operational benefit that they currently provide. Finally, I think it’s critical to know what the current draw is for entire system and each of the primary sub-components of the system.  Obviously it’s impossible to have any current analysis on hand if the decisions on which components will be used haven’t been made. Clearly just dumping a bunch of components together into the ship, even if they are wired up correctly, won’t cut it from a systems standpoint.  For me it’s simple: Better to know all this now AS I construct the airplane rather than later . . . and yes, that’s just my opinion.

Looking forward to after the airplane is flying, with aerodynamics ascertained and airframe structurally integrity verified, then the lion’s share of importance is placed on OPERATING the aircraft.  Operating the aircraft relies on electrical systems, and requires those systems and components be optimized and working correctly.  Of course there will always be a need for fine-tuning these electrical components and a good ability to troubleshoot them as well.  In short: effective & efficient troubleshooting comes down to thorough & meticulous system documentation.  This holds especially true later on down the road when equipment upgrades, swap outs, additions or even removal is wanted or required.

I’ve seen a firsthand example of what a royal PITA it can be when system documentation is not on hand and you’re trying to troubleshoot, understand and/or upgrade your aircraft electrical system components. Specifically on my buddy Marco’s recently acquired already-built Long-EZ.  I spoke with Terry Lamp, the builder of Marco’s Long-EZ, at Rough River about the lack of electrical system documentation.  Terry had created a whole slew of electrical system diagrams & documents for the airplane, but gave it to the new (2nd) owner when the new owner bought the plane.  However, somewhere/somehow the second owner never transferred the electrical system info to owner #3.  Fast forward to Marco as owner #4, and he’s sitting there doing a LOT of head scratching to figure what was done, installed, modified, etc. on the electrical system.  Understandably not Marco’s fault at all, but clearly not a lot of fun.  The bottom line is I plan NOT to be an aircraft owner that doesn’t have an in-depth ability to quickly assess, analyze and identify an electrical system problem due to a lack of good documentation (ala owner #2!).

Ok, with all that said (yes, rant over & off soap box!) . . . I spent quite a few hours today updating my electrical system diagrams & annotating them to reflect what was actually wired on the Triparagon.  In addition, I also deconflicted a number of grounding positions, and consolidated a few ground paths as well.  At times this took digging back through the manuals, and certainly involved cross-referencing and updating a bunch of my different wiring diagrams to ensure they all told the same story.   In addition, I annotated the nearly 50 wire label codes I printed out into my wire label tracking spreadsheet.  Finally, I really can see how finalizing the Triparagon wiring, which I’ll estimate at a good 30% of the overall aircraft wiring, really helps in synching the remaining wiring pinouts, grounds and wiring circuits in playing well together.


17 November 2016 — I spoke at length with Bob from TCW Technologies twice today to finalize my Integrated Backup Battery System (IBBS) circuit configuration.  While reviewing the installation manual I ran into some questions on the Pass Thru pins on the IBBS.  Changing over to the X-Bus configuration and adding a switch apparently jumbled up my circuitry a bit and Bob was nice enough to walk me through how to get back on the straight and narrow path.

In short, at a minimum I eliminated another switch off the panel and it looks promising that I’ll be replacing the 8-port ATC fuse panel that is the X-Bus, for a 9-pin D-Sub connector, thus saving weight and of course space on the Triparagon.  With a total rework of the IBBS wiring, I wanted to get my notes transferred over into reality on the IBBS/X-Bus wiring diagram.  In addition, as I worked to organize & update the wiring schemes in my electrical system I finally had enough of tracking a bunch of info on a clipboard, so I ended up creating 2 new diagrams that I’ve long since had on my diagram list:

18. AG6 Annunciators
27. Main Power Buss


18 November 2016 — After spending a good bit of time in the AG6 warning annunciator manual last night, I started off today once again with about 1-1/2 hours of updating my initial electrical diagram for the dual AG6s I have installed.  I had originally only had the AG6s on this diagram with all other warning circuits listed in diagram 16, which specifically has a small housed module for the gear & canopy warning annunciation (shown below) along with the other warning stuff.

However, since I pulled all the individual warning LEDs off my panel and routed them all through my AG6s (the exact reason why I bought another one) it stands to reason that to show those circuits ALL warning circuits other than the gear & canopy warning module needed to be on the AG6 wiring diagram page while only the gear & canopy warning module wiring is depicted now on diagram 16.

I also realized after looking to copy a pic of the AG6 annunciator to show in this post that I may have never actually posted a pic of one.  These are stock pics below from the company who makes them, Aircraft Extras, Inc.

Here’s the entire system, with the boards mounted back-to-back on the upper Triparagon. Each board will have 6 warning circuits for a total of 12 and will display on a button that can be pushed in to acknowledge an alarm state.  Of course 2 AG6s means 2 display buttons on my panel.

AG6 Annunciator System

There are 3 available background colors for the AG6 display screens: red, green and yellow.  Below is a couple representative pics of the red & green displays.

AG6 Annunciator display buttonAG6 Annunciator display button

I also couldn’t find a shot of the JBWilco gear & canopy warning module that I’m using in my system.  I picked this up from a guy who built a bunch of them after he designed it for use in his Cozy.  He got tired of making & selling them, and I just happened to contact him right as he was selling his very last one.

J.B. Wilco Gear & Canopy warning module

As you can see, this module is very small and very light.  This will actually drive a pair of red & green LEDs on my panel.  These will be the only LED warning lights on my panel, since I’m wiring the Wilhelmson gear & landing brake LED pairs up to the AG6s to display gear up/down and landing brake up/down.  This module will sound a warning for the gear & the canopy, both visually through the LEDs and also through a warning buzzer.  BTW, this gear & canopy module will be the only warning that uses a buzzer.  I may configure other warnings to provide audio warning tones, but those will all be driven through the EFIS and only be heard via headphones.

J.B. Wilco Gear & Canopy warning module•••


21 November 2016 — Today I started off with a little cleanup action on the nose gear wiring harness.  I’ve had a bundle of excess wires sitting on top of the NG30 cover for eons now and decided it was time to clear them off.  Also, instead of using butt connectors I opted for a more “elegant” solution and spliced the wires using a pigtail to secure the stripped ends of the individual wires together before soldering them.

Here is the first set of 3 that I did this morning.  You can see the long 3-4 wire pigtail that I teased out of the stripped red wire on the left before cutting the rest of the stripped wires short in length to match the white wire on the right.

Splicing nose gear power wires

I then used the pigtail to secure the 2 wires together.  I could have used a wire or two less on the pigtail and also cut it a bit shorter, which added to the slight excess in the wrap. No worries though, it still worked great.

Splicing nose gear power wires

I then soldered the wires together.  I actually added just a tad bit more solder after I took the pic below.

Splicing nose gear power wires

Here’s wire set #2 getting spliced . . .

Splicing nose gear power wires

. . .  then soldered.

Splicing nose gear power wires

And wire set #3 completed in the same fashion.

Splicing nose gear power wires

Here you can see all 3 wire sets spliced & soldered together.  I used shrink tubing over the joint for added joint strength, then simply used the label as a second layer over the shrink tubing for even more added strength.  After I finished with the shrink tubing & labels, I then hooked up up the battery leads and ran the nose gear up & down a bit to ensure the splices were carrying current, which they did.

Heat shrink labeled spliced nose gear power wires

This morning at breakfast I drew up a plan for a bracket that would hold the AMP CPC connectors P3 (A/P pitch trim servo) and P5 (pilot stick grip) in place on the avionics bay sidewall.

I decided to go ahead and knock this out so that the glass would be laid up and curing overnight.  For the bracket material I figured I would use some leftover 1/16″ thick G10 that I had on hand.  I was going to use some of my 1/16″ brown phenolic at first, but it cuts a little easier than the G10 so I’m saving it to continue using for my nutplate backers.

G10 plate for AMP CPC connectors

So I cut off a 3.5″ long piece off the 2.2″ wide strip of G10.  I then rounded the front corners.

G10 plate for AMP CPC connectors

And drilled 2 pilot holes to mark the center of the larger holes.

G10 plate for AMP CPC connectors

Which I then drilled next… along with the small #40 & #6 size screw holes, respectively of course!

G10 plate drilled for AMP CPC connectors

After finalizing my mounting location, I then 5-min glued the bracket into place on the sidewall.  I screwed the aft corner of the bracket to a clamped 2×4 piece to keep the bracket aligned while the 5-min glue cured.

G10 plate 5-min glued for AMP CPC connectors

My last official act of the evening was to stop making noise and start making some fumes… epoxy fumes that is.  I whipped up some epoxy and laid up 2 plies of BID on the top side of the AMP CPC connector bracket.  I did use a flox fillet so the glass would transition well between the wall and the bracket. And of course I finished off the layup with some peel ply.

P3 and P4 AMP CPC connector bracket


22 November 2016 — I started off today by cleaning up something I forgot to mention yesterday: the Rivnut that I installed with flox into the lower frame of the instrument panel to mount an Adel clamp for the blue multi-wired Infinity stick control cable.  I drilled the hole using my flexible drill bit adapter and a 1/4″ drill bit.  Then when I laid up the 2 plies of BID on the top of the AMP CPC connector bracket, I floxed the Rivnut into place.  As per usual, I used a small piece of duct tape on each end to keep the flox from gumming up the threads.

This morning I removed the outer piece of duct tape.

Floxed Rivnut for control stick Adel clamp

And then test fitted the Adel clamp.  I’ll be installing one more of these Adel clamps for the control stick cable on the outboard/front edge of the instrument panel corner reinforcement wedge I installed a while back.

Floxed Rivnut for control stick Adel clamp

I then spent a good half hour redrilling the holes and cleaning up the 2-ply BID layup on the topside of the AMP CPC connector bracket.  In the left pic below, besides the cleaned up connector bracket you can see the freshly mounted lower control stick cable Adel clamp, and the instrument panel corner reinforcement wedge where I’ll install the second control stick cable Adel clamp.

I then quickly test fitted the control stick cable AMP CPC connector (P5) after sanding the underside of the bracket in prep for glassing.  You can also see I bagged up & taped the AP pitch servo to keep it epoxy free.

AMP CPC bracket top 2-ply BID cured

AMP CPC bracket connector test fit

After adding a flox fillet at the corner of the bracket & the fuselage sidewall, I then laid up 2 plies of BID on the underside of the AMP CPC connector bracket.

AMP CPC bracket underside 2-ply BID layup

I finished off the layup with a strip of peel ply, primarily focusing on having a good glass transition on the sidewall glass (read: no fiberglass barbs playing “gotcha” while working in the avionics bay!)

AMP CPC bracket underside 2-ply BID layup

I then left for my flight lesson… [flew 3 instrument approaches under the hood… beautiful day for flying and the 30 seconds I saw here & there out from under the hood were an awesome sight! haha!]

Upon returning from flying, I spent another good half hour razor trimming the 2-ply BID layup on the underside of the AMP CPC connector.


26 November 2016 — Over the past few days during the Thanksgiving holiday I’ve actually been getting a fair amount of electrical system documentation, planning & system design work done.  Some things I’ve done, like taking the time out to figure out the wiring & pinouts for the Infinity pilot control stick buttons, switches & wires, is pretty much a known quantity and simply needed to be completed & checked off the to-do list.

Determining P5 connector pinouts

But the pitot-static was a different animal entirely. I had some pieces parts on hand, but I really needed to get educated on pitot-static systems before starting out.  During my research I ran across a very nicely detailed post on the VAF forum from Paul Dye (editor of KitPlanes mag) concerning his pitot-static system.  In the post he not only described his pitot-static system, and the advice that Stein (from SteinAir) –who we know is a genius on all things panel related– gave him, but how he also devised his pitot-static system, and in turn his electrical system, to allow for the panel to be removed EZily.  Hmmm?!

I played around with designing my pitot-static system with the intent to get it documented in PowerPoint and on paper, but have not gotten around to either yet.  Although I pretty much have the pitot-static system designed in chicken-scratch form & in my head, as you can see below (the diagram below was summarily stolen from a guy asking questions on his p-s system that posted it to VAF…I’m merely modifying it to suit my needs!).  But the panel removal idea –one that Marco and I have discussed non-specifically many times– began to gnaw at me more & more each passing day over these past few days.  It was definitely germinating in my brain.  One overriding reason is that if I could pull it off, it could literally change the structure & process of how I build the nose of my plane.

Planning/Configuring pitot-static system

So today I spent the entire day taking inventory and listing out every single wire that comes off the panel mounted avionics, instruments, warning lights, buttons, switches, etc. I determined what connectors would need to stay connected, and which ones must be disconnected for the panel to be removed.  I created a whole new series of connector designators for the D-Sub and Molex series connectors: J1 – Jn, as compared to the current series of the AMP CPC connector series: P1 – Pn.  

After hours of collecting this data, and determining that it could be done, then I got to the business of updating the majority of my electrical diagrams to reflect these new intermediate connectors.  I determined a couple of things, at least initially:

  1. The majority of switches will be on separate sub panels that will be removed from the panel before it is removed.
  2. The Avidyne P1002 communications connector and the Dynon intercom connectors will have to be removed and stay on the plane side due to the multiple cross/inter- connects to components and the shielded wiring.
  3. Given the factors above, I determined the number of pins required could be provided with 37-pin (J4) and 15-pin (J3) D-sub connectors, and utilizing the 19-pin AMP CPC connector (P6) that I had previously planned on using for the GIB stick grip.  These should give me enough pins for the panel wiring, with some extra slots.  The AMP CPC (P6) and 15-pin D-Sub (J3) will handle primarily power & ground wires, while the 37-pin D-Sub (J4) will handle primarily signal (a ton of RS232) wires.

Panel removal electrical connectors

Of course I need to confirm and refine my plan, but with this in hand and the finalizing of the pitot-static routing plan, I’ll be able to finalize the component placement on the Triparagon, get the top cross shelf and side mounting tabs cut and lightening holes drilled. I’ll also be able to roll these new factors into the design of the top nose structure and see how it effects the forward canopy skirt.


27 November 2016 — Today I started out by finalizing my pitot-static system plan.  I still need to make some phone calls tomorrow to some of system vendors to ensure I’ve got the most optimized configuration for hooking up the pitot-static lines on their respective systems, but beyond that I’m pretty much done.  I’ll be dropping an order to Stein here soon and it will include the remainder of the parts I need to complete my pitot-static system install [NOTE: I’m also posting stuff on the pitot-static system in Chapter 13 – Nose & Nose Gear since that’s were it was covered in the original plans].

Pitot-Static System

In addition the pitot-static system, I also reviewed & assessed my recently added Triparagon connectors that should allow me to remove the instrument panel fairly easily.  I found a few more issues that made me add the Trio autopilot’s wiring harness to the list of components that require me to simply remove the connector.  The main issue with this harness is that there are shielded wires that run all the way back to the roll servo.  Clearly these are not easily removed, and I’m sticking to Stein’s advice (because I agree!) to NOT add connectors in the middle of shielded wire runs.  Thus, this requires me to remove the Trio autopilot’s connector and leave it in the plane when I remove the instrument panel. In short, I made a lot more progress on the concept of running all the instrument panel components’ wires through connectors to allow EZ removal of the panel.

Later on, I figured I would get some wiring done while I was watched football.  Since I had just had the Trio autopilot wiring harness out, I decided to re-terminate the roll servo pins with AMP CPC pins vs Molex, and add the AMP CPC connector housing.  I’m not messing with the pitch servo since it needs to be cut significantly shorter and I need to get a good measurement for that.

Trio autopilot wiring harness

The pic below shows how the connector pins looked before I started.  Again, I cut the Molex pins off and reterminated the wires with AMP CPC pins and then mounted the connector housing for the roll servo cable.

New A/P roll servo AMP CPC connector

Continuing on, perhaps a little ironically I removed the 9-pin D-Sub connector from the roll TRIM servo and swapped it out with a 4-pin Molex connector I got from Stein.  As you probably know, I’m not a huge fan of Molex connectors, but I figure any roll trim servo failure is fairly benign in the operational realm of flying a Long-EZ.

"Old" Roll TRIM Servo connector

I started by cutting off the D-Sub connector as close to the connector housing as possible.  In both pics above and below you can see the 4-pin Molex connector housing.

Swapping Roll TRIM servo connector

I then reterminated the wires with mini-Molex pins.

New Roll TRIM servo Molex connector pins

And then snapped the pins in place into the Molex connector housing.  BTW, this connector is J6.  I’ll of course wait to terminate & add wires to the other half of the connector when I actually install the roll trim servo.

New Roll TRIM servo Molex connector

My last action of the evening was to rewire the wiring harness for the TruTrak ADI.  As I was taking inventory of all the wires, which included digging into the manuals, I noted that the wires on the TT ADI’s wiring harness connector were simply HUGE!  Although the installation manual calls out for 22 AWG wiring, these wires range from 14 to 18 gage… way too big!  Since the wires were soldered into the 9-pin D-Sub connector, I simply created an entire new TT ADI wiring harness D-Sub connector with crimped pins.  I of course used 22 AWG wires for the new harness.

Rewiring TruTrak ADI wiring harness

Here’s a closer shot of the new TT ADI wiring harness (red, black & yellow) that will replace the old one (white wires).

Rewiring TruTrak ADI wiring harness


28 November 2016 — Yep, today I employed a rudimentary list-form version of the Karnaugh map, or k-map to figure out the circuits going to/from the respective A & B sides of the 3 connectors that I’m using to enable a fairly quick-disconnect of my instrument panel.  If you’re wondering what a k-map is, it’s used in Boolean Algebra and reduction to reduce a multitude of circuits down into the least number of circuits possible and still get all the correct functions out of an integrated circuit chip.  Or, as that Internet thing puts it, “Karnaugh mapping is a graphic technique for reducing a Sum-of-Products (SOP) expression to its minimum form.

Although not overly difficult, it was of course time consuming to go through literally every wire & component to ascertain its relationship to the panel.  Moreover, since I had finalized all the I/O requirements (yes, this is still an airplane building blog, NOT a computer forum… ha!) for my throttle handle switches, I realized as I was building the new connector diagrams that with a little internal (to the throttle handle) consolidation of 3 ground wires, that I only needed exactly 19-pins for the throttle handle connector.  Thus, I could then swap out the 24-pin connector that I had planned on using for the throttle with the now “old” 19-pin connector that I had on hand for the recently put-out-to-pasture GIB Infinity control stick (AKA “the really expensive spare control stick”).  The new configuration for my 3 connectors (I’m going to have to come up with a reference name to identify these things! . . . I’m leaning toward the “PQD (Panel Quick Disconnect”) is as follows:

  • P6: 24-pin AMP CPC – Thick wires/high power & ground connections
  • J3: 15-pin D-Sub – Thin wires/low power & ground connections
  • J4: 37-pin D-Sub – RS232 data & low power transfer connections

With the PQD connectors (trying it out . . . ) squared away I then decided that before I put away the Trio Pro Pilot autopilot wiring harness I would cut & terminate the shielded 4-wire cable for the pitch servo.  I took it down to the shop and determined the required length.  I then cut it WAY shorter than how it comes from Trio.  The excess cable that I cut off is visible above the harness in the pic below (post terminated connectors).

Trio autopilot wiring harness

As with shielded cables, I carefully stripped the outer cable jacket and consolidated the shielding wire to one side.  After twisting it and cutting it down to about a 0.3″ pigtail, I then soldered a piece of black 22 AWG wire to the pigtail.  I then terminated the black pigtail wire in tandem in an AMP CPC socket with the identified ground wire of the 4 wires. I then terminated the other 3 wires with sockets as well.  Also, I added a piece of black heat shrink over the soldered joint to protect the joint and add a bit of strength to the cable for when I eventually set the connector cable clamp in place.  Finally, as I did with the roll servo cable, I performed an electrical continuity check on each wire to ensure my connector terminations were good.

Cut and terminated pitch servo wires

This concludes the connector upgrades for the autopilot’s pitch & roll servos, and the wiring harness pitch & roll servo cable feeds.  The roll servo connector (below right) is pretty much complete, but I haven’t finalized it 100% since I will have to remove the connector to route the cable down the fuselage side & through the firewall.  As for the pitch servo cable (below left), I still need to terminate the 2 autotrim wires and install those into the connector when it gets installed “for good” in the plane.

AP pitch servo and roll servo connectors

The last task of the evening was to review the mounting spacing of the Trig TT22 Transponder on the topside of the Triparagon cross shelf since it could potentially affect the mounting of both the front 1″ overhang on right-side cross shelf, as well as the PQD junction mount on the aft right side of the cross shelf (both on the underside of the cross shelf).


29 November 2016 — First off, after some impromptu research I’ve decided that since I’m keeping a very large portion of the original panel in tact for strength behind the Aluminum panel face, that I’ll be using 0.063″ 2024T3 for the instrument panel. I was actually in the process of ordering that panel from ACS, when I double checked my spreadsheet and lo & behold, I had a spare 2′ x 2′ panel on hand from years ago.  Woo-hoo!

After working some on the PQD bracket mounting on the Triparagon cross shelf, I headed out the door to an auto racing shop just across the river in Maryland that sells some high end stuff.  I knew that they sold the same quick disconnect fittings that I’m using for my pitot-static system, so I wanted to take a quick break from the build and take a gander.

Back from the racing shop, and as I was collecting up the right sized bits for drilling the connector mounting holes into the PQD bracket, I decided to take yet another slight detour to finalize a task that needed finishing: the right-side avionics wall bracket for the P3 & P5 connectors.  I drilled out the 8 total connector mounting screw holes and then did a final cleanup on the bracket by sanding down the edges and ridding it of excess glass fibers around all the holes.  I then test mounted both the P3 & P5 connectors.  I brought down the Trio A/P wiring harness from upstairs to test fit the other side of the P3 connector [confession time: I spent a good 10 minutes looking for that darn P3 connector just to finally realize that I had mounted it to the end of the Trio wiring harness pitch servo cable!].  You can see that I also set the 2 white auto trim wired into the back of the P3 connector as well.

P3 & P5 connector bracket completed

Here’s a longer shot of the P3-A/P Pitch Servo and P5-Infinity Stick Grip connectors test fitted and mocked up in place.

P3 & P5 connector bracket completed

And yet another shot showing all my current Avionics Bay connectors.

Connectors, connectors!

I reordered my blog post pics just a bit to make the topic flow a bit EZier to follow.  If you looked closely in my Avionics Bay pic above, you may have noted that I drilled a hole into the triangular panel support and added another RivNut for the second & final Adel clamp that will also be used for the Infinity Stick Grip cable routing from the stick to the P5 connector.  I also added a couple of layers of BID on the bottom side of the support triangle to beef up the RivNut mounting.

RivNut in for stick cable 2nd Adel clamp


30 November 2016 — I started out today cleaning up the RivNut installed on the triangular panel support.  I knife trimmed the excess 2-ply BID layup and pulled the protective tape from the top of the RivNut.  I then function tested it as you can see below.  Works to plan so far!

With the new Adel clamp in place for the Infinity stick grip cable, I could then check the proper slack for the cable, mount it in the Adel clamps, then mark the cable for cutting to length.

Measuring stick control cable for cutting

I pulled the stick grip out and took it to my mad scientist’s electrical laboratory upstairs. Before starting work on it however, I spent a good 1-1/2 hours reconfirming the wiring pinouts for the P5 connector.  I consolidated 4 ground wires coming out of the stick grip into 2 wires to give 5 open pins, which enabled me to piggy back 5 wires into the P5 connector: 4 for the roll trim servo (behind the pilot’s seat) and 1 for the ELT GPS signal (like many other builders have done, my ELT will be positioned on the outboard fuselage sidewall, on the inboard side of the right strake’s baggage compartment… so just aft & outboard of my right shoulder).  As I was configuring the P5B half (the stick grip side) of the connector, I went ahead and spent another good hour+ figuring out the P5A side of the equation, which is the all points yonder (Triparagon, PQD, panel) side of the connector. It took some time since this process required a good bit of verification & cross-checking with the various electrical diagrams and the component installation manuals.

I had already gotten a late start since I was up late (working on this build!) last night.  I ran out to run some errands in the late afternoon and to pick up some small 4-40 stainless steel screws from a local hardware store that still has a wall of hard-to-find hardware in their back room.  When I got back I toned out all my stick grip wires to check continuity and verify wire colors, since I had swagged some guesses on them as I was building the P5 pinout diagram. With my P5 pinout up to speed, I did some prerequisite tasks for terminating the P5B connector onto the stick grip such as printing out shrink tube labels. For the 5-wire roll trim piggyback cable I checked availability of parts, since I have 4-pin mini-Molex connectors on hand and I need at least a 5-pin (which actually means 6-pin). Again, I don’t want to use a 9-pin D-Sub here, so I added a couple of 6-pin connectors to the Stein order that I’m compiling.  Boy, it’s an obvious statement I know, but the nit-noy parts buying process for these builds is ENDLESS!

I then started (finally!) on terminating the Infinity stick grip cable wires for the P5 connector, B side.  After taking a big breath and cutting the cable to length, I then slid the plethora of heat shrink tubes & labels onto the cable.  I then cut the outer cable jacket to expose the 17 inner wires.

Prepping control stick cable with labels

I didn’t take a bunch of sequential pics, so here’s what I did: I started off having to find & verify the pairs/groups of wires for each switch in the control stick.  As I found each new set, I would strip the end of the wires, terminate them with an AMP CPC socket, check continuity, and then mark them off the list.  I also used small pieces of masking tape to keep the pairs/groups of wires together.  After I terminated all the wires, which included 2 sets of 2-pair ground wires, I then double-checked the electrical continuity and then snapped them in place into the correct numbered socket hole.  I then rechecked continuity again just to ensure I had gotten it all right… which I didn’t.  I swapped the 2 green wires and had to pop them out and reinsert them into the correct socket positions.  I toned out the entire cable again to ensure the sockets were in the correct position with electrical continuity, which they were.

Stick grip cable wires terminated into connector

I then went down to the shop, measured the required length of roll trim & ELT GPS pigtail legnths at 10.5″.  Instead of using the 5-wire cable that I have (you’ll see that in pics tomorrow), I decided to simply use free 22 AWG wires. I actually started collecting the wires with the correct color codes (ie white with blue stripe, etc.) when I realized that instead of wasting my good multi-colored wire, I would simply use white wire and use a Sharpie to mark the correct color on the last couple of inches of the wire.  For the the two plain white wires in the bunch, I simply swapped out the white wire at pin #2 for a grey wire, so no confusion would set in while I await my 6-pin mini-Molex connector from Stein. I then terminated the 5 each 22 AWG pigtail wires with mini-Molex pins.

Stick grip cable wires terminated into connector

I then terminated the other end of the 5 pigtail wires with AMP CPC sockets. I verified that my crimps on the terminated wire ends were good by doing a continuity check on each wire.

Roll trim wires and ELT GPS wire

To keep the 5 pigtail wires under control, I threw on a small piece of black heat shrink.

Roll trim wires and ELT GPS wire

I then snapped the pigtail wires into their appropriate socket holes in the back of the P5 connector.  I also went to town on the cable with my heat gun and shrunk all the shrink tubing and labels in place.

Roll trim wires and ELT GPS wire installed

I then did a final continuity check on the pigtail wires, and with that all that was left to do was to mount the cable clamp, that I conveniently did not forgot to put on the cable this time!

Grip stick cable connector ready for cable clamp

Here’s the Infinity stick grip cable terminated with the P5 AMP CPC connector and 5 pigtail wires that will go into a 6-pin mini-Molex connector.  If I wasn’t clear on the pigtail use before, it will allow the 4 roll trim/1 ELT GPS wires to transit into the P5 connector, but still allow me to disconnect the roll trim/ELT GPS cable at the 6-pin mini-Molex connector when I simply want to remove ONLY the Infinity stick grip and cable from the plane. Clearly, in this scenario, once the 6-pin mini-Molex connector is disconnected the 5-wire roll trim+ELT GPS cable would remain mounted under the right armrest.

Stick grip cable with roll trim pig tail completed

Here’s a couple closeup shots of the P5B connector with the cable clamp in place.

Grip stick cable connector cable clamp

Grip stick cable connector cable clamp

I realized as I remounted the control stick, ran the stick grip cable and screwed the P5B connector onto the P5A connector at the P3/P5 mounting bracket that I’m going to have to carefully trim the back outboard corner opening of the armrest to get that big mojamma P5B connector into the armrest!  After that it traverses through the lower instrument panel bulkhead hole fine.

Grip stick cable and connector test install

Also, I’m very happy with the stick grip cable run since it keeps the cable nicely tucked out of the way from the elevator control tube range of motion.

Grip stick cable and connector test install

Here’s a final shot of the freshly terminated stick grip cable connector and installed cable.

Grip stick cable and connector test install


1 December 2016 — Today was kind of a light build day.  I did finalize and submit orders to SteinAir and ACS, but I also wanted to knock out the 5-wire roll trim & ELT GPS signal cable that piggybacks off the Infinity stick grip’s P5 connector.

I started by trimming back the outer cable sheath and collected up my 5 mini-Molex sockets.  This first end that I terminated was for the P5 connector side since all these sockets will mount into a 6-pin mini-Molex connector housing (J5) that I just ordered from Stein.

5-wire roll trim & ELT GPS cable

Here’s the mini-Molex connectors terminated on the P5/J5 connector side of the 5-wire roll trim & ELT GPS signal cable.  Although this cable does of course include the ELT GPS signal cable, I have given it the moniker –and label– of simply the “ROLL TRIM cable.”

Roll trim & ELT GPS cable mini-Molex sockets

I then terminated the 5-individual wires on the roll trim servo end.  The J6 mini-Molex connector on that end is only a 4-pin connector, since that is all that is required to drive the Roll Trim’s RAC T2-10A servo.  I separated out the ELT GPS signal wire and terminated it with a D-Sub pin for future connection with the ELT GPS feed that will have a D-Sub socket.  I then terminated the other 4 wires with mini-Molex sockets.  I then added heat shrink to the wires groups.

5-wire roll trim & ELT GPS cable ends terminated

Here’s a closer shot at both ends of the Roll Trim Cable.

5-wire roll trim & ELT GPS cable ends terminated

Here’s the J6 4-pin mini-Molex connector (A side) on the Roll Trim servo side, and the ELT GPS signal wire.

Roll trim servo side J6 mini-Molex connector

And a look at the entire Roll Trim system.

5-wire roll trim & ELT GPS cable complete!

I was playing around a bit (dismantling) the odd, heavy, large joystick-type switch that came in the throttle handle when I found this guy buried inside of it.  It’s a rather large press-in-fit momentary on-off switch that I’m going to press into service as my GIB PTT button!

Serendipitous discovery of GIB PTT button!

My final act of the evening as I watched Thursday night football was to finalize the rewiring of the TruTrak ADI wiring harness by twisting the whopping three 22 AWG wires together and then installing the backshell to the 9-pin D-Sub connector.  I included the originally installed harness wires in this pic to again show how huge they were/are (14-18 ga)!

Completed rewiring of TT ADI wiring harness


2 December 2016 — Yup, today was a light build day! I took a large piece of paper and sketched out actual sized positioning for my switches and their panel positions.  With space so tight behind the panel (again, actually forward of the panel) I was specifically attempting to figure out where to put my Dynon intercom box.  It seems small, and it is fairly petite in height and width.  But add on the wiring harness D-Sub connector to the back side of this thing and now your talking over 6″ deep!  And that’s not even really accounting for the radius of the wiring bends that need to make a turn to go somewhere!  I came up with 3 spots that will actually, physically work and then assessed them on my panel sketch:

  1. Center top of the panel
  2. Left top console immediately forward of the throttle (my throttle quadrant will sit back some from the panel unlike the plan’s position)
  3. Right top console against the sidewall just aft of the stick opening (I did a full range of motion check with the stick and flight controls and there’s plenty of space since I had to kick the controls inboard 3/4″ to allow use of the Cozy Girrrls control parts)

I did pros & cons for all 3 positions, and quickly nixed the top center panel mounting idea. With an input jack for music, and the way the wiring would flow (read: get in the way) on the back side of the panel, this location just won’t work for me.

I will say that one issue I never really understood with Long-EZ’s until riding in my buddy Marco’s Long-EZ is that with the seat bulkheads designed/constructed the way they are, you cannot mount switches or items aft of where you can reach since your elbows cannot move aft at all…  since the physical seat back (aka “wall”) prevents it!  If you do, you have to mount the switch or device in a spot where you can reach over with the opposite hand to manipulate it.  This is exactly what I need to test out tomorrow, since I prefer the intercom face to be mounted on my right console just aft of the control stick/opening, tucked away against the fuselage sidewall.  But the question that needs to be answered is: CAN I REACH IT?!


4 December 2016 — Ya’ll have probably noticed that as I work on any one component, I like to knock out those components directly around it since I’m already “in the groove,” plus it gets those items finished.  In addition, I already know how they fit into the area that I’m working. I understand that my build methodology is somewhat organic, and often unscripted, but staying motivated and simply getting many productive hours in on the build a day is the key to having an airplane sitting on the ramp vs a project in your garage, right?!

And so it is with my electrical system.  There are a myriad of low hanging fruits right now that I’m simply going to knock out: changing as many variables into constants and resolving as many unknowns as I can at this point in the build.

Thus, it is that one of those low hanging fruits right now is the throttle handle.  As I’ve stated before, especially in an airplane as space constrained as a Long-EZ, I am a total believer in maximizing the HOTAS (Hands on Throttle and Stick) concept as much as possible.  If it’s good enough for task-saturated military fighter pilots, it should work fairly well for us too.

I started off yesterday by determining my wiring gage requirements for the throttle switches.  I then assessed the 17 wires in the 2+ ft of leftover blue cable that I cut off the Infinity stick grip.  After listing out all the wires and gages, I determined that I could I repurpose this leftover blue cable for the throttle handle switches.  Since there’s only 17 wires in the cable, I’ll also run two 18 AWG wires for the landing brake along the outside of the blue cable, for a total of 19 wires to the P4 AMP CPC connector.

I then got to work widening the mounting hole diameter for my 5-way castle switch (“joystick”) that controls a few A → B options on the GPS (i.e. GPS to VLOC) or page/screen scrolling functions (Trio fuel screens, GRT screen flips, etc).

Current throttle joystick hole mount diameter

A few months ago I picked up these drill bits specifically for this task: the 39/64″ bit to drill out the majority of the hole diameter, then the 19/32″ bit to fine tune the hole size.

Drill bits for widening joystick switch hole diameter

Here’s the hole post drilling, ready for the 5-position switch.

New throttle joystick switch hole mount diameter

The switch has a plastic keyway on the side for positioning.  Of course I could have removed it, but I decided to leave it in place and notch the side of the hole.  I clocked the switch position so that not only are the finger grips in the 3-6-9-12 O’clock positions, but also so that the ground connector tab was closest to the backside handle opening.

Throttle joystick switch keyway

After notching the hole for the switch’s keyway, I then test fitted the switch.  So far I’m very happy with how this switch is working out!

Test fit of throttle joystick switch

Here’s an inside-handle shot of the 5-way switch, with the ground connector tab on the aft side of the switch closest to the handle opening.

Test fit of throttle joystick switch

Here’s a shot of the back side of the 5-position switch.  Note that the ground tab is the tab on the far left, away from the center 5 tabs..

Throttle joystick switch soldering tabs

I then cut, stripped & soldered the 5 switch position wires and the ground wire onto the tabs on the backside of the 5-position switch.

Throttle joystick switch wires soldered in place

Another shot of the wires soldered onto the 5-position switch.

Throttle joystick switch wires soldered in place

On the 2 other top mounted throttle push button switches… since I couldn’t get these switches out of the throttle handle without destroying or marring them greatly, I simply used the wires that were attached to the switches and soldered them to the identified wires in the leftover blue cable that I cut off the Infinity stick grip.

Well, after getting these 2 switches wires soldered to the blue cable wires, I then toned them out for continuity.  When I check continuity on my Fluke multimeter, I generally just check for sound and call it good.  But this time I actually caught sight of the resistance reading, which was on the order of 6 & 9 ohms for the respective switches. Whoa, pretty high resistance for basic momentary push button switches, what was going on?  Well, under closer inspection I realized that the heat shrink over the wires at the switches wasn’t just wires, there were resistors in line as as well.  Of course I don’t need resistors for these 2 switches, so they had to go.

After I removed the offending resistors, then the issue became soldering the switch leads onto the switch posts down in the very depths of the throttle handle housing.  Hmmm, I’m decent at soldering, but this proved to be a bit challenging.  I did it, but my confidence in the physical strength of the solder joints wasn’t as high to my liking, so I did what any responsible builder would do, I reinforced those solder joints by burying them in potting goop!  After testing the switches electrical continuity (good) and checking that the resistance was back down into the normal range (0.2Ω), I then used E6000 to cover up the freshly soldered switch lead wire joints.

PTT and COM1 Freq FlipFlop switches potted

I went ahead and ran a strip of labels and printed off a few to label the switches on the inside of the throttle handle.

Throttle switches labeled

I then got to work on the SW024, the transponder Ident button & SmartStart arming switch.  I cleaned up the switch wire tabs and soldered the correct colored wires to the tabs.

Transponder Ident and SmartStart Arming switch

I then mounted the 5-position switch (SW020) and remounted the transponder Ident & SmartStart arming switch (SW024) into the throttle handle using RTV silicone, and set it aside to cure.

Interior throttle handle

As the 2 freshly added throttle handle switches cured, I then got to work on the nose gear UP & DOWN switch.  Again, I verified the correct size and colors of the wires, then soldered them into place.

Throttle mounted nose Gear switch wired

I then finished off the mojamma of the throttle handles switches, the landing brake switch with its multiple cross-pairs of wires.

Nose Gear and Landing Brake switches wired

Here’s a shot of the day’s tasks, with a total of 4 out of the 6 switches installed.

Throttle handle switches


5 December 2016 — As I was finalizing my last blog post the doorbell rang. It was my mailman delivering my order from Stein.  I finished my blog post then opened up the box to check out all the goodies.  I took the 6-pin mini-Molex and quickly mounted the B-side to the roll trim cable. I already had labels made up so I quickly labeled both sides of the J5 jack as well.  (As a reminder, my labeling scheme for connectors is quite simple: the “A” means it’s closer to the nose while “B” means tail side.  If the connector or jack is vertical, then the hard mounted side is “A” and the removal side is “B”).

Roll trim cable terminated into J5 connector

I then took a few minutes to prep the fuselage for me to sit in it and make some airplane noises.  I needed to figure out where my Dynon intercom box is going to call home, so I pulled the wood blocks out from under the nose wheel, cleaned the tools and extraneous components out of the front seat and climbed in.  I discovered that I can reach back and manipulate the controls of the intercom if it’s against the right fuselage sidewall, just aft of the stick.  How about 2″ aft of the stick… uh, nope, not really.  Too difficult there.  But half an inch back I can curl my hand down comfortably and work the intercom controls.  I like this position because it’s really unclaimed, unused real estate that could be put to good use.  Also, I’ve had my eye on the left armrest area just forward of the throttle quadrant to use for my environmental controls panel.  Now that I’ve decided to put the Dynon intercom on the right armrest console just aft of the stick I can reclaim the forward left armrest console for these environment controls!

In addition, in thinking about where my intercom control head would go, I naturally wondered where I was going to put my headset jacks.  I’ve discussed this with Marco in the past, and we had yet another quick exchange about it via text.  I really wanted to keep the headphone jacks off the panel, but where to put them?  After doing a bit of research last night, I would like to give a shout out to Nate Mullins –and in turn, James Redmon– for highlighting the very aft side of the armrest for being a good location.  Now, they picked the aft side of the left armrest to mount their jacks, but I’m leaning towards the right for 3 reasons:

  1. It keeps the headset wires on the right side of the seat when ingressing/egressing the aircraft.
  2. It keeps the electrical wires on the right side of the aircraft (power wires right, antenna cables left), and
  3. It keeps the shielded wire run betwixt intercom box and jack very short, and since  this specific wire run is the most susceptible to gremlins and things that go static-y in the night, I would rather keep it as short (aka noise free) as possible.

So that’s 2 fairly significant component placement decisions that I made today…. after literally years of those questions floating around in the recesses of my mind.

Ok, on to the task at hand: wiring the throttle handle.

While down in the shop I collected up my throttle-handle-mounted nose gear switch that I had gooped up the aft end of with E6000 to secure the wires both to each other and to the switch body. Since these switches are older (but still look in great shape) and I had to wrangle off the massive amounts of old wiring, I want to make sure both the solder connections and switch connecting tabs stay secure, and are subjected to as little vibration as possible.

E6000 goop to strengthen wires

Here’s another shot of the E6000 gooped-up nose gear switch.

E6000 goop to strengthen wires

To finalize my wire-securing process on the nose gear switch, I added 2 pieces of heat shrink around the base of the wires and goop.

Double ply of heat shrink tubing

I then added a piece of heat shrink that secured the wire/goop subassembly to the body of the switch.

Heat shrink tubing to secure wires & terminals

I had to run down to my favorite hardware store to pick up a 2-56 stainless steel CS screw since I apparently lost one the nose gear switch’s mounting screw somewhere.  I test fitted the screws, took it back apart, and then judiciously used some E6000 on the screws and around the base of the switch mount before permanently mounting the nose gear switch into place on the throttle handle side.

Nose gear switch mounted into throttle handle

Here’s how the developing rats nest of wires looked after I added the nose gear switch.

Nose gear switch in interior throttle handle

I should note that before I ran out to get the missing 2-56 screw (try finding one of those when you don’t know where it ran off to!) I gooped up the wires/switch intersection of the landing brake switch with E6000.  Here are a couple of slightly fuzzy pics to show you how it looked when it cured.

Fuzzy pic #1 of E6000 on landing brake switch

Fuzzy pic #2 of E6000 on landing brake switch

I then repeated the heat shrink process on the wire/goop area of the landing brake switch.

Heat shrink tubing on landing brake switch

Then secured it to the switch body with a clear piece of heat shrink.

Final clear heat shrink on landing brake switch

I then installed the bottom and last switch for the landing brake into the throttle handle.

At this point it was time to start connecting all the throttle handle switches’ wire leads to the blue cable.  I spent a good 3 hours soldering all the switch lead wires to the blue cable harness wires.  I had already identified which wires in the blue cable were 22 AWG and which ones were 20 AWG, and had to account for this when wiring up the switches.  I did only 2-3 wires at a time, ensured they toned out, then added heat shrink (that I had to ensure was on the wires before I started soldering) over the solder joint.

Throttle handle Landing Brake switch installed

Then it was time to start cramming… wires that is.  There was actually enough room in the throttle handle housing to stuff all the wires back into ti comfortably.  As you can see I reclaimed one of the ring connectors from the original harness and pigtailed it off the ground wire for ground to the throttle handle housing.  You can also see that in this and subsequent pics that I finalized securing the two extra 18 AWG wires on the cable.  I also labeled the cable and added lengths of heat shrink to secure the two 18 AWG wires.

Stuffing wires back into the throttle handle!

I then remounted the outboard side plate of throttle handle with the 3 original screws.

Throttle handle side cover reinstalled

Here’s a shot of the throttle handle with all the switches rewired & remounted and the cable prepped for having an AMP CPC connector terminated onto it.

Throttle handle cable completed

I then terminated all the wires with AMP CPC connector sockets.

AMP CPC sockets terminated on throttle handle cable

Since I hadn’t actually created the pinout scheme for the P4 connector, I stopped work and spent a good 45 minutes determining the pinouts for this connector.  Once done, I toned out the wires to ensure both continuity and to check wire IDs since there were multiple wires for each color (eg lots of red & black wires).  As I determined what wire was what I then placed them into their appropriate numbered socket hole.

Sockets inserted into P4 AMP CPC connector

Here’s a closer shot of the throttle handle switch wiring terminated into an AMP CPC connector housing.

Sockets inserted into P4 AMP CPC connector

And here’s a shot of the front face of the P4 B-side AMP CPC connector.

Sockets inserted into P4 AMP CPC connector

I then secured the wires with silicon rubber self-sealing tape before finalizing the cable clamp install.

Final wire wrap on P4 connector before cable clamp

I then mounted the cable clamp to finish up the throttle handle cable wiring.

Throttle handle cable assembly completeThrottle handle cable assembly complete

Here’s a shot of the full length throttle handle cable.

Throttle handle cable assembly complete

And a final shot of the throttle handle and P4 connector.

Throttle handle cable assembly complete


6 December 2016 — I started off today by calling Bob at TCW Technologies and had a good discussion on connecting the IBBS power cables to the 9-pin D-Sub connector that will be the new X-Bus (vs the ATC fuse panel). [The remaining tasks were Triparagon focused].

I then spent a good couple of hours updating my IBBS wiring diagram and determining the pinouts for my PQD (Panel Quick Disconnect) connectors.


7 December 2016 — I started off today by updating and printing out my connector pinout sheets for the following connectors:

  • P4 – Throttle Handle AMP CPC
  • P5 – Infinity Control Stick AMP CPC
  • P6 – Panel Quick Disconnect (PQD) AMP CPC
  • X-Bus – IBBS-Powered Avionics Bus 9-Pin D-Sub
  • J3 – PQD Panel Power Connections 15-Pin D-Sub
  • J4 – PQD Panel Signal Connections 37-Pin D-Sub

At the tail end of my updates my buddy Marco called.  We talked a bit on EZ stuff, and as we spoke I got to work on soldering two 16 AWG wires to the back of a 9-Pin D-Sub connector (that I repurposed from its original role as the TruTrak ADI wiring harness).

This 9-Pin D-Sub will become the new X-Bus, replacing the original 8-slot ATC fuse holder that was the X-Bus.  As per one of my very educational discussions with Bob from TCW Technologies on the IBBS install, he informed me that I don’t need to power a fuse panel since all the components powered by the IBBS must not max out past 5 amps, and the integral 10-amp mini-ATC fuse on the side of the IBBS protects these items.  I had already chucked a panel-mounted switch that manually switched IBBS power to E-Bus power (EZ’er to let the IBBS to perform this standard function), and now I was eliminating more weight and complexity by swapping out the ATC fuse panel  X-Bus for the new & improved 9-Pin D-Sub connector X-bus.

Now, I did originally plan on using two 18 AWG wires, but Bob advised to use 16 AWG wires.  They still seem like a bit of overkill to me, so I have to admit I went 16 AWG on the other 2 wires (power & ground) that Bob intoned should be 14 AWG.

Building the new X-Bus from a 9-Pin D-Sub

Here’s a closer shot of the two 16 AWG wires to be soldered onto the back of the 9-Pin D-Sub connector that will replace the current X-Bus.

Building the new X-Bus with two 16ga wires

I then soldered the 16 AWG wires into place.

New X-Bus 16 ga wires soldered onto 9-Pin D-Sub

And prepped them with heat shrink . . .

New X-Bus Connector & Cable

Prior to mounting the wires/connector assembly in a D-Sub backshell.

X-Bus D-Sub connector backshell

Since I want the IBBS-to-XBus circuit to have a break in it –since the wires pass through the Napster bulkhead– to allow the wires to be run without concern of the D-Sub connector getting in the way, or if unable to traverse bulkheads, I terminated the ends of the two 16 AWG X-Bus feed wires with knife splice terminals.

Forward end of X-Bus cable: 2 knife splices

Here’s a shot of the finished X-Bus cable (A side, from IBBS).

Completed X-Bus to IBBS cable

I then traced out, toned out and cut off about 9 feet of wire to trim down the four 20 AWG X-Bus feed wires coming out of the IBBS.  I toned them out to ensure I had the correct wires, then terminated them into pairs, into 1 knife splice each.  Thus, what I have is 4 wires exiting the IBBS unit, then those getting terminated into pairs with knife splices, then each pair connecting to a 16 AWG wire that feeds the X-Bus 9-Pin D-Sub connector (actually, the way I soldered all the pins together, it’s technically a 9-Pin D-Sub Buss).

IBBS side of X-Bus leads: 2 knife splices

I then turned my sights on the 3 pass-thru power wires and 1 main bus voltage sensor wire.  In my discussion with Bob, he said it was perfectly ok to run these all together and fuse it with 10 amps off the main bus.  So that’s exactly what I did! [Conversely, the IBBS install manual shows one fused feed to the main bus for the 3 pass-thru wires, and another fused feed for the sensor wire… always good to talk straight to the guy who designs this stuff!]

Since the other end of these 4 wires converged into one is simply a FastOn PIDG connector, I didn’t create a break in this wire group.  I merely bundle them all together and slathered with hot solder!

IBBS 3 pwr & 1 sensor wire into a 16 ga wire

As you can see, I did the Bob Nuckolls’ technique of making a 2-wire pigtail from the 16 AWG wire, then wrapping that around the bundle of wires so that they are all nice and tightly snug before soldering.

Soldering 4 IBBS wire leads into one 16ga wire

Here’s my IBBS 3 pass-thru power wires and bus volt sensor wire soldered to the !6 AWG wire on its way to the main bus.

4 IBBS wire leads soldered into one 16ga wire

I then did the same thing for the 3 ground wires that get grounded on the panel ground block (G4).

3 IBBS GND leads soldered into one 16ga wire

You may have noticed that some of my wire labels are hand written.  There are 2 reasons for this: First, I ran out of the correct size wire label heat shrink (I’m waiting for an order to arrive), and second, I’m reclaiming some printed labels that fell victim to becoming obsolete when the new world order of PQD came into existence.  I prefer to be more practical than flashy, so to save money I simply lined through the old printed label on the heat shrink piece, flipped it over and ever-so-nicely printed a new, correct label on the other side.

In hindsight, I should have taken a pic of the entire IBBS wiring harness before I started this process to contrast with what you see below, which is just a few random pics of the completed IBBS wiring harness.

IBBS & X-Bus wiring

I have 3 wires out of the original 14 that did not get cut or combined:

  • IBBS Master Switch (to panel switch)
  • Info lead (to GRT HXr EFIS…via J4)
  • IBBS Low Voltage Warning (to AG6 Warning Annunciator)

And the wires that did get cut & combined:

  • 4 X-Bus Power leads into 2x 16AWG wires
  • 3 Pass-thru Power wires & 1 Bus Volt Sensing wire into 1x 16AWG wire
  • 3 Ground wires into 1x 16AWG wire

Among other things, this simply means that I now have half the wires to keep track of (7 vs 14) coming off the IBBS wiring harness, and fewer wires passing through the Napster bulkhead.

IBBS & X-Bus wiring

One final point of note.  Due to how the IBBS box is mount vertically on the front left face of Napster, as the wires in the harness exit the IBBS D-Sub connector they must immediately make a U-Turn to get keep from dragging on the floor of the nose battery compartment.  One of my first tasks tonight was to place a large piece of black heat shrink over all the wires in the harness.  Then before applying heat, I zip-tied the harness back onto itself in a “U” shape.  I then heat up & shrank the tubing and it kept its “U” shape perfectly.  Pretty cool!

IBBS & X-Bus wiring


8 December 2016 — Today I spent a couple of hours prepping my Jack Wilhelmson Landing Brake wiring harness.  Below you can see the included switch panel for mounting the switch and LED lights to the instrument panel.  I removed that switch since I replaced it with the switch in the throttle handle to control the Landing Brake, which means that the wiring goes through the P4 connector.

The majority of time I spent working on this bad boy wasn’t the actual physical wiring stuff, but in tracking down, confirming & verifying what wires went where to label them correctly.  Again, since I’m utilizing connectors now in my electrical system wiring scheme, much of my previous A → B wiring is now A → ⊗ | ⊗ → B where ⊗ is the connector.  Since many of my wire labels are now outdated, I simply crossed out the old label with a Sharpie and rewrote the new labels by hand to use up my stock of “bad” labels on this wiring harness.

Landing Brake wiring harness

Since the wires coming out of the relay decks were too short to comfortably terminate into the P4 connector, I had to extend these wires.  Instead of soldering them, I went the lazy route this time around and simply used butt connectors.  I then used heat shrink over the crimped butt connectors.  As you can see, I finished labeling all these harness wires, and then crimped AMP CPC pins on the ends of the 4 Landing Brake wires that will get terminated into the P4 connector.

Landing Brake harness wires AMP CPC pins

Here are the 4 Landing Brake wires terminated into the P4 connector.  Note that I slipped the cable clamp into place before terminating the wires.

Landing Brake harness wires in P4 connector

A closer shot of the Landing Brake wires in the P4 connector (A side).

Landing Brake harness wires in P4 connector


9 December 2016 — I started off today with the intent to finish the edging on the lightening holes on the Triparagon cross shelf.  But that didn’t happen.

What did happen was I did a test fit of the IBBS & it’s ‘new & improved’ wiring harness. Part of that test fit was to ensure that ALL the wires –not just the IBBS wires– fit through the hole & protective grommet that traverses the Napster bulkhead.  And, as per usual, since I just happened to be in the neighbor hood, I figured I couldn’t really test if the wires fit unless the actual wires (and cables) that will run through this transit hole are used in the test.

So I decided to go ahead and get the landing landing light and taxi light wiring/cabling knocked out.

First up was the landing light.  The installation manual for the AeroLEDs Sunray Plus landing light calls for using 20 AWG shielded wiring to power the light.  I only had 22 AWG on hand, so I used it since I’m confident that it will work since the actual run is only about 5 ft vs 3-5 longer than that if it was buried out at the end of a wing somewhere in a “typical” install.

I started by stripping away about 2″ of the outer jacket.

2-wire 22AWG shielded landing light cable

I then wrangled and cut the shielding wire.

Wrangling shielding on landing light cable

And soldered a piece of 22AWG black wire for the ground wire.

Ground wire soldered to shielding on landing light cable

I then heat shrinked it all up: red to symbolize positive power, and black for the negative ground wire.

Landing light cable end reinforced with heat shrink

I then terminated the wire ends with mini-Molex socket connectors.  Note that the black pigtail wire will actually terminated on a mini ground tabs block that I’ll have mounted onto the negative post of the battery.  [Note: Although I’m not a fan of Molex connectors for the larger, multi-pinned connectors, the mini-Molex connectors work just fine for 2-6 wire applications … just my opinion, YMMV].

Landing light cable min-Molex sockets & ground pigtail

I then prepped the landing light side.  I had 2 extra wires that I simply folded back onto the main cable and heat shrinked in place.  I then terminated the remaining 3 active wires (red for light power, black for ground, yellow for wig-wag) with mini-Molex pin connectors.

Fuzzy land light wires prepped & pins crimped on

And then attached the 4-pin mini-Molex connector (J0, A side).

mini-Molex connector (J0A) housing in place

After running the landing light cable through the hole & grommet in Napster, I then connected the J0B side of the landing light connector to the J0A side.  Looking good!  Note in the pic above and below the white wire leads of the taxi light, those will change in a bit.

Landing light cable connected to landing light

I had previously installed the IBBS to test its fit.  As a side note, after some investigation I realized that the end of the IBBS box cover (that has the “IB” label attached) was bowed out a bit & thus not allowing me to use normal sized AN3 nuts.  So I removed the IBBS cover, gently pressed the end back straight, reattached it and . . . Voila!  It mounts perfectly!

Back to the wiring… Get this: to get all the wires to fit, I actually have to removed the grommet out of the lower wire transit hole in Napster, then push the 2 knife splices through, then the PIDG FastOn connectors for the IBSS power & ground wires, then reinsert the grommet before the rest of the wires can go through.  Also, I can’t terminate OR LABEL any more wires at this time if they are going to fit through that hole…. VERY TIGHT FIT! Which is good because of course it keeps the wires secure.  It also gave me a chance to try out my “Wire Spoon” that I picked up from Stein a million years ago and have never used.  Works great and really does allow you to insert wires through the hole in the midst of a big wire bundle that you would otherwise not be able to get in there.

IBBS test install & wire run to ensure fit/clearances

The next couple of shots are simply closeups of the IBBS wiring harness crossing over the nose gear back up battery, just underneath the nose tool box, and exiting out of the nose through the lower hole in Napster.  (You get a better shot of the IBBS harness “U-Turn” in pic #2).

IBBS wiring harness in & test fit wires thru BH

IBBS test install & wire run to ensure fit/clearances

Here’s a long view of “Electron Alley” showing the myriad of wires that are currently in play and that I’m contending with.

"Electron Alley" - lots of wires!

I then set to work to terminate and wire up the Taxi Light with a 22 AWG blue wire for power (blue just happens to be the color of the wires used in the Infinity stick grip for that switch, so I carried that color all the way through) and a 22 AWG black wire for ground.  Note that I also labeled the wires on the light side, something I didn’t have space to do on the landing light.  I finished off the installation using a 2-pin mini-Molex connector (J7) that I bought well over a year ago specifically for the taxi light connection.

Taxi Light connector & wiring

Here’s a closer shot of ‘Electron Alley’ . . .

"Electron Alley" - lots of wires!

And a shot of the lower wire transit hole in Napster from the aft side.  The wires you see are currently all the wires that I plan on having transit through this hole (yes, things can change, thus the emphasis on the word “currently”!).

Aft side Napster BH wires thru hole and grommet

I also wanted to get a pic of the old ATC fuse block X-Bus (left) compared to the new 9-Pin  D-Sub X-Bus (right).  As I pointed out before, this modification will save space, weight and complexity (e.g. no individual fuses).

Old vs New X-Bus

I was heading out to dinner with a buddy of mine, but before I ran out I wanted to get one more thing finished for the evening: widen the lower left hole in the instrument panel bulkhead to allow the P4 connector, which was just a tad too big (note the black markings on the sides of the hole) to fit.  I used a sanding drum on my drilled, fired up my shop vac and went to work.

Widening lower left hole in IP BH for P4 clearance

Less than a minute later . . . Voila!  Now the P4 connector just fits through the hole!  My next step will be to add an Adel clamp to keep the throttle handle cable secure.  I would like to reiterate my ongoing theme here by pointing out that this is the type of stuff I really want to get figured out before I close up the nose, while I have infinitely much more access to work on it all.

P4 connector access thru IP bulkhead


12 December 2016 — Last night I diagrammed out the 8-position DPDT relay required for the new taxi light servo.  Besides adding the relay into the mix on the Lights wiring diagram page, I also updated the wire depictions from the switch to the landing light to better highlight the shielded cable.  I also added in the J0 & J7 connectors.

Today was all about the incorporation of airspeed switches, of which I have 3:

  • AS001 – 100 knot exclusively switching trim fast⇔slow to provide faster trim response at slow speeds and minute trim changes at high speeds.
  • AS002 – 70 knot for low speed warning (AG6), RAM air open warning (AG6) and taxi light deployment, all occurring below 70 knots.
  • AS003 – Exclusively for heated pitot tube shutoff below 40 knots.  This is a safety feature of course since I have an extremely high heat producing element in the nose of a plastic airplane that absolutely must be off when the plane is not moving.

Airspeed switches

The speeds may seem a bit generic right now, but remember these are simply target speeds and are totally adjustable.  I’ll of course dial them once the plane is flying.  Also, a point of note is that none of the items controlled or reported on by these airspeed switches are actual flight control components.  If the trim airspeed switch dies, then I’ll simply control the plane with a higher or lower than optimum sensitivity on the trim, or simply sans trim…. a pain yes, but a safety of flight issue? no.

The above all being stated, I realized this weekend that I had a potential issue with my airspeed switches: I just had no idea how to wire these guys up!!  They seem simple enough in theory, and are right there for the purchasing at Aircraft Spruce… so what’s the big deal?  Well, at the bottom of the scant bit of info on a 1-page install instruction sheet, it inconspicuously states at the bottom: Maximum switch current = 20 milliamps.


20 milliamps?!  What do I have that uses anywhere near 20 milliamps?? … except maybe my 2 AG6 warning annunciators!  Hmmm . . . another mystery.  How do I wire this airspeed switch in series to something I’m controlling, when the airspeed switch can only handle 20 milliamps?  If I were simply using this to report warning states from airspeed-switch-only derived info [<, > speed x] than no worries.  But clearly that isn’t the case.

Thus, the first thing I did today was called Bob at TCW and left him a voicemail with an overview of my dilemma.  I then worked on some needed updates on this web site for a couple hours. I also updated my grounding buss pinout matrix (below).

Grounding buss matrix

After knocking out some administrivia, Bob called me back.  He essentially told me to roll up my sleeves, sharpen my #2 pencils and start taking some notes.  Also, I needed to reach back into the recesses of my mind and not only find, but dust off, Ohm’s Law, because we were going to need it to figure these babies out boys & girls!

To make a long story short, the bottom line in getting to the holy grail figure of 20 milliamps or below when one is incorporating a relay with an airspeed switch is to ensure the relay coil resistance is above 600 ohms minimum, which of course drives down the amount of current (using 12V power = < 20 mA) that can pass through it. Ok, so I got that down, plus the need to use a protective parallel diode, much as we do on our main power battery contactors.

After getting off the phone with Bob I just needed to take a breath and do some self inventory, of my relays of course.  Sadly, the quintessential B&C-sold S704-1 relay (below), of which I have a few at the ready, have a relay coil resistance of 144 ohms.  No good! I then had to go on the hunt for the proper relays on Mouser to find acceptably rated relays.

Moreover, the sticky wicket for a high-current-powered item like the heating element in the pitot tube is that relays that have high coil resistance typically handle lower current loads. Nonetheless, I have an order queued up with mouser, and will test out a few different relays.  I also have an alternate design to stick with my S704-1 relay as the first line relay to power the pitot tube, which itself would be controlled by a much smaller second line relay controlled by the airspeed switch (AS003). (relay photo from

S704-1 relay

With all my new found knowledge on airspeed switches, I quickly got it all annotated on paper by then doing yet another major design overhaul on my Lights Wiring Diagram. After ensuring I have everything identified that I need up to this point, I’ll pull the trigger on my mouser order in the next day or two.

Lights wiring diagram

Ok, the taxi light operations and airspeed switch incorporation really were the last 2 long poles in the tent as far as electrical system design that I had serious questions on.  With the code cracked on both of those, I can move on to finishing round #1 on the Triparagon & avionics bay/nose components wiring.  I’m sure I’ll have wiring questions on some of the panel devices and the engine ignition & monitoring component wiring, but that’s a ways down the road.


18 December 2016 — I didn’t get a ton done today on the right side Triparagon component wiring, but I did get some significant stuff done.  I did get a few more P6 PQD connector wires terminated, labeled and in place, but today was really all about getting the remaining 3 Integrated Backup Battery System (IBBS) leads up to speed.

The 3 leads the IBBS wiring harness that I left long before are the EFIS backup battery info lead, the X-Bus voltage (AG6) lead, and the IBBS power on/off switch lead.  The issue is that of the 3, I can’t terminate 2 of them since I wouldn’t be able to fit them through the hole & grommet in the Napster bulkhead if I did.  The X-Bus voltage monitoring lead, which is an optional lead that would normally power an LED warning light, is the only one I could terminate since I simply chose to use the ‘ol inline D-Sub pin-to-D-sub socket connector trick (again, ala Bob Nuckolls).

Since a D-Sub pin is barely –if at all– bigger than a 22 AWG wire, then I had no issue terminating the voltage info wire lead with one.  That being said, however, although I printed the labels for this wire I can’t heat shrink them in place until after I get the wire installed through the Napster bulkhead!  The labels simply add too much diameter and since they’re rubbery in texture, too much friction.

IBBS side D-Sub battery info pin

Now, the X-Bus voltage monitoring lead is a little unique in this configuration since it also feeds a piggy-backed wire to the AG6 warning annunciator that lights up if there is a low voltage condition on the X-Bus.  Again, in the stock installation configuration, this would be an LED lighting up, but I’m connecting it the AG6 for the warning annunciation.  To ensure the proper power on the circuit I needed to place a resistor in the circuit to protect the AG6 (and mimic a load of an LED light… I know, not much juice there).  I originally had identified the need for a 2K Ohm resistor, but I only I had a 1.5K resistor on hand, so in it went… good enough!

Thus, my first task of the day was to solder a small lead onto the 1.5K Ohm resistor, or perhaps solder the resistor to the lead . . . who knows?!

Soldering lead to 1.5K Ohm resistor

Anyway, here’s the resistor soldered to the 22 AWG wire lead.

Lead to 1.5K Ohm resistor soldered

I’m using the same configuration for soldering a resistor inline as I did for the Voltage Regulator, which allows for excellent strain relief for the soldered resistor (BTW, I picked up this nifty trick off the EAA workshop videos).  To the open side of the resistor I then soldered the AG6 lead (white/green stripe wire) and a mini-pigtail terminated with a D-Sub socket (purple/yellow stripe) to later mate up with the wire coming from the IBBS (that I terminated with a D-Sub pin/above).

IBBS D-Sub, AG6 & X-Bus leads soldered in place

I then terminated the initial mini-lead with a D-sub pin, since this will actually get terminated into the 9-Pin D-Sub X-Bus connector (B side).

X-Bus D-Sub pin terminated in place

I then covered each of the solder joints with heat shrink.

Initial heat shrinks

And then the entire resistor zig-zag joint with a piece of heat shrink.  Note the 3 other leads –coming from the P6 connector– that are terminated into the X-Bus 9-Pin D-Sub connector.

Heat shrink on wires for strength

I then test fitted it into the 9-pin D-Sub back shell, confirming my initial hypothesis that it would fit.

Test fitting wire bundle in D-Sub back shell

I then mounted the opposite side of the back shell in place.  The fit is tight, but not uncomfortably tight where it has to be forced.  (Both sides shown below).

Bundle fits in 9-pin D-Sub Backshell!9-pin D-Sub Backshell, from other side


20 December 2016 — Well, as per usual I knocked out one of the “low-hanging fruit” items first.  I had to go down to the shop to measure some stuff & check component fit in the nose, so I drug the Radenna SkyRadar ADS-B receiver and power cable down there with me.  I checked the required length of the cable and then upon returning upstairs, I cut the power cable.  This included cable, by the way, had a cigarette lighter charger adapter on the end of it.

I then verified positive & negative sides of the cable and then terminated each wire with a D-Sub pin.  Later on, without the ADS-B receiver in hand, I looked up its 2-character code and somehow derived that it was “DX,” so that’s what I used on the labels.  Then after affixing the heat shrink labels I realized that the code was actually “AD”…. not “DX”.  Ugh! So, instead of redoing the labels, I double checked my list and sure enough I wasn’t using “DX” for anything else, so I simply swapped the component ID sticker label to DX.  This all took place after I took the pic below, but the component ID is now DX for the ADS-B receiver.  Endless fun in Never-never Land kids!

Sky Radar ADS-B receiver power wires terminated

I then got to work on my main task of the day: getting the heated pitot tube circuit completed between the airspeed switch #3 (40 Kt) control relay and the pitot tube power relay.  Since I got the correctly rated relays –as defined by Bob at TCW Tech– in from Mouser, I could move forward on wiring up my #2 and #3 airspeed switches.  To be clear, my buddy Marco is working on a high end control box for the heated pitot tube that when completed can easily be implemented into this system.  As for now, I’m simply using a $3 relay to ensure that my pitot system is ready, barring any delays that Marco may incur on the Arduino-based heated pitot tube control system he’s developing.  After all, he has an airplane to build as well!

Here’s a shot of my general purpose relay.  Again, the main requirements for these specific relays that I’m using for the airspeed switches was A) minimum 600 Ω resistance on the power coil, and B) small, narrow body to allow EZ placement inline to the wiring.

40kt Airspeed switch #3 control relay for Pitot Tube

Since I was going to heat shrink wrap this baby after I finished, I went ahead and removed the NC (normally closed) pin since it had no role in this circuit design.  What remained where the 2 coil posts to the right, then moving left the common (C) terminal, and then far left the NO (normally open) terminal.

40kt Airspeed switch #3 control relay for Pitot Tube

I then soldered the power (red & red/yellow) wires into place. And the ground control wire that hooks into tab 1 of the airspeed switch (orange/black).  As per Bob at TCW, I also soldered in a 1N4001 diode between the power connections across the coil.

Wiring airspeed switch control relay for Pitot Tube

On the NO terminal I soldered in a long 22AWG wire that terminates into + side of the heated pitot tube POWER relay (here I’m working on the control relay… again, there are 2 total relays for this circuit).

Wiring airspeed switch control relay for Pitot Tube

I then wrapped the wire leads around the body of the relay for strain relief and then heat shrank the whole assembly together.

Airspeed switch control relay for Pitot Tube done

Here’s the finished product, with each wire appropriately terminated and labeled.  The black wire twisted in with the purple/blue wire is simply the return ground for the + / − coil control on the heated pitot tube POWER relay (RL005).

Airspeed switch control relay & pitot tube power relay

Next I plan to build the airspeed switch #2 relay much in the same fashion as this one.  AS #2 will be a 70 Kt control relay for taxi light (allowed to extend below 70 Kts), the RAM air valve open warning (below 70 Kts), and the Low Speed (~stall) warning.


24 December 2016 — I started off today by finishing up the wiring harness, for lack of a better term, for the MGL RTC-2 clock.  I printed out the heat shrink labels, put them on, and then terminated the wires into the connectors (P6 and J4, both B sides).

MGL RTC-2 Clock Wiring Harness finished

With the wiring finished I then decided to do a quick checkout of the RTC-2 clock, so I hooked it up and fired it up.  I then familiarized myself with the screen system and set up some of the parameters.  With everything looking good I turned it off, pulled the plug and put it back on the shelf.

Function testing MGL RTC-2 Clock

I then started in on wiring up the relay for airspeed switch #2 to control the 3 components that are controlled by this airspeed switch, all below 70 knots:

  • Taxi Light extension
  • Low speed warning (via AG6)
  • RAM air butterfly valve open warning (via AG6)

Note in the pic below that I cut off the Normally Open (NO) pin since it’s not required in this configuration.

Airspeed switch #2 component control relay

For the power feed side of the relay, off the NC pin, I tied 3 wires into one to connect to the relay.  Again, I did the Bob Nuckolls’ technique of using a pigtail from the single wire to wrap around the wire bundle.

Airspeed switch #2 component power feed

Here’s a closeup.

Airspeed switch #2 power feed wire splicing

I then soldered the wire connection bundle.

Airspeed switch #2 power feed wire splicing

And then covered the joint with some heat shrink for wire security.

Airspeed switch #2 power feed wire splicingI then soldered the power lead to the relay and wrapped the wires around the relay in prep for heat shrink.

Airspeed switch #2 -- soldering wires in place

Which I added next.  The heat shrink really does a good job of holding the wires securely in place.

Airspeed switch #2 wiring completed

I then terminated and labeled the wires. I also built the separate wire for the #2 terminal on the airspeed switch, which is simply a ground wire to the avionics ground bus (G5) [single black wire in upper right corner].

Airspeed switch #2 harness completed

I then got to work on the last ancillary relay that will be added (at least at this point) to the electrical system: the COM1-COM2 PTT switch relay.  Since I only have an (ON)-OFF-ON switch available to me on my control stick, I had to use a relay if I wanted to use that switch to flip between my COM1 and COM2 radios for PTT.  Here’s the switch positions:

  • ON (Up) – NO relay position that closes to switch PTT to COM2 radio
  • OFF (Middle) – Default NC position, keeps PTT on COM1 radio unless flipped up.
  • (ON) (Down) – Momentary ON position that is NOT run through the relay.  Controls COM1 radio freq FlipFlop (COM2 radio FlipFlop & functions controlled via HXr EFIS). Does not effect the middle OFF/NC relay position.

I started with the main bus fed power wire and soldered it to the coil pin.

COM1-COM2 selector relay -- RL009

I then soldered the other wires into place.  The purple wire connects to the COM1-COM2 PTT flip switch on the control stick.  The 3 wires with the black heat shrink are all 22 AWG shielded wires.  The common wire goes to the Dynon Intercom, with the other 2 wires going to the COM1 and COM2 radios, respectively. (COM1 = NC, COM2 = NO)

COM1-COM2 selector relay - shielded wiring

As with all the other relay packs that I’ve assembled, I then wrapped the wires around the relay and covered it with heat shrink.

COM1-COM2 selector relay completed

[Operational Note: RL9 has since been upgraded to a 3PDT relay, see below]


27 December 2016 — Today I receive a pack of 1/16″ roll pins that I ordered, so I was able to mount my gray finger grip back onto the landing brake switch post (permanently).  Last year I had to drill out the original roll pin in order to get the finger grip off to then allow me to remove the switch from the throttle handle housing.  In fact, the hole that is now visible on the side (top) of the switch grip wasn’t there when I started last year and was created as a result of my drilling endeavors.  Presently, I put some E6000 on the bottom side of the switch to help seal up the roll pin hole.

Barring any other adventures, this does it for the completion of my throttle handle switch installation, wiring & prep.

Air Brake Toggle Switch Finger Grip

The remainder of my work over the past couple of days has been around finalizing the electrical system push. For one, I started compiling a list of even more electrical system components I’ll need for the future (shielded wiring, consumables, etc.).  I also printed out a couple of batches (~12) of heat shrink wire labels and attached some of those.

One main thing I’ve been doing is updating my electrical diagrams.  You can imagine there is simply a myriad of data that needs to be annotated (in digital form, vs. my own chicken scratches!) on these diagrams: wire colors, wire sizes, wire labels –these change a lot with the addition of connectors– circuit changes, etc.  I would say that it’s not uncommon for me to have anywhere from a dozen to 50 data points on each diagram that requires updating, which in and of itself isn’t necessarily or overly difficult.  However, the crosschecking (or consolidating) of ground points, bus tab positions (again, or piggybacking) –and making the decisions on those as well– is what eats up a good bit of time.  And of course there’s the oft required research that may accompany any such decision.

In addition, I’ve done (or simply documented) major circuit design revisions, mainly the items that are controlled via the airspeed switches and/or ancillary relays.  I also did a major overhaul of my panel dimmer and cockpit lighting & dimming circuit design as well. As a point of reference, I haven’t touched this particular wiring diagram since June 2014, so it definitely needed some attention.


4 January 2017 — Over the holidays I’ve been quietly working on the odd & end aspects of various areas of electrical stuff in my push to get as far as I can on finalizing the electrical system before moving on with the rest of the build.

I updated the wiring diagram for the AG6 warning annunciators, driven in part by my decision to only have actual warning annunciations communicated by the AG6 displays.  Thus, I decided to transfer the simple ON/OFF LED displays for those items that I merely want to know if they are in an on or off state (start armed, taxi light, pitot tube & fuel pump) off of the AG6s.  I ordered what look to be some high end LED annunciator buttons off of Ebay for these 4 ON/OFF indicators.  I’ll assess those when they arrive and move on from there.

I have one more item to report as for warning annunciators: as I was doing my research for what I should employ as simple device ON/OFF indicators, I ran across a post on the VAF forum from Paul Dye (Editor in Chief for KITPLANES magazine) arguing the merits for having a backup Oil Pressure warning indicator that was not integrated into the glass cockpit system… in other words, not reported by the EFIS or the Engine Management System.  I assessed this for a few days, and finally concluded that if I did have a catastrophic display outage and was looking at nothing but red “X”s on the EFIS displays that it would be nice to have ONE annunciator light to provide the overarching status of my engine health, and oil pressure is arguably (as Paul Dye so eloquently does) the biggest. For a weight penalty of 3 ounces, I decided I would incorporate this backup oil pressure status into my warning annunciation scheme.

I also decided that I was long overdue in doing a thorough ops check of the Trutrak 3-1/8” ADI that I picked up off of Ebay from an RV driver as an attitude reference backup to my glass panel.  I did a quick review of the instructions and fired it up.  Since I had the GPS puck plugged in I wasn’t quite sure why I wasn’t getting the GPS track info in the window where the 3 lighted dashes appear.  Well, I got back into the manual, did a quick online search and still couldn’t find an answer.  Hmmm, did I have a bad unit that needs repaired?

I couldn’t ponder on it long since I had to run out and help a friend move some furniture (the bane of being a pick-up truck owner!).  Well, I arrived at the location a bit earlier than they did, so I decided to call Trutrak and find out the story on the 3 dashes.  It turns out that the 3 dashes are normal & that no track info is displayed until the aircraft is in motion…. Ok, another good instrument ops check!

Ops checking Trutrak ADI


11 January 2017 — Today I decided to crack the code on just how the AG6 annunciators (again, I have 2) are programmed.  Well, the programming manual might as well have been written in Mandarin Chinese when I started, but after working through it bit by bit I finally got the swing of it.  The weirdest thing about these annunciators is that you only have one interface to program them, the button –also the annunciator screen– which makes things interesting.  There are only 2 inputs that the screen recognizes, akin to Morse code: a short press [<0.7 sec] and a long press [>0.7 sec].  It also recognizes the rate and combinations of these presses together (analogous to the ‘double-click’ on a computer).  Again, once I worked at it a few times the input was really a non-issue. Add a little patience and it’s actually something new and fun.

One issue I had was that I failed to realize that there was an online spreadsheet that had the codes that I needed to program (or reprogram) these annunciators.  My being remiss in having this critical document on hand was evident after a few telephone and email discussions that I had with Rich from

AG6 Warning Annunciator Screen

With the spreadsheet in hand I was able to effectively program about 80-90% of the input screens that I wanted.  To be clear, I had the installation manual that described the entire programming process, but what I didn’t have was the spreadsheet that had the required codes to tell me what screen ID numbers to input for the warning screens that I wanted annunciated… until after talking with Rich of course!

AG6 Warning Annunciator Screen

Since the AG6, as with what seems like the majority of experimental aircraft products these days, is traditionally geared towards the RV crowd, there are some unique warning annunciator screens I would like that are not on the list of hundreds of screens already preprogrammed on the AG6.

After finalizing all the programming I could do, I determined that I needed 2 completely new screens and slight modifications to 2 other screens to provide me what I’m looking for in my warning annunciation scheme.  The 2 new screens are “IBBS Low V.” for my IBBS unit, and “RAM OPEN” / “RAM CLOSD” for my engine RAM air intake.

AG6 Warning Annunciator Screen

As for the pics above, I would like to point out that the top pic portrays the actual visual appearance the best of these 3 pics.  A brilliant, bright red light is really hard to capture with any of my cameras, and comes out looking orange and pale, and is not representative of its actual appearance (the same thing holds true for the indicators below).

Finally, the top pic showing “CANPY CLOSD” is one that I want changed to “CANPY LOCKD” (there is a screen ID for the latter, but for some reason it too is showing as simply “CANPY CLOSD”).  There will be no “ALT.” screen, but rather “Low Volts” for the main bus low volt state (via the B&C LRC-14 voltage regulator).

The last pic above is the annunciation that will show up for a few seconds immediately following engine start to show that the starter solenoid is not hung up (“hung start”).  As a reminder, a hung starter state is dangerous since huge current flow is rushing through the system from battery to starter and back unabated, which will fry the battery… with even possibly more bad smoking, fiery stuff to follow (Dick Rutan addresses this in CP #99).  To be clear, the more important screens are the red, flashing warning annunciations that will come and stay on until recognized with a screen press, or the warning state ceases on its own.  Thus, the entire time the starter is powered there will be a flashing red light depicting “STRTR ON” until it’s disengaged, at which point the green annunciator screen shown above will flash on.

Moving on…

As I mentioned the other day, in my quest to finalize both my warning annunciation scheme and my device ON/OFF indicators (below) I ran across a discussion from Paul Dye (Editor in Chief of KITPLANES mag) arguing that a simple, separate, non-EFIS or engine management system linked low oil pressure light should be incorporated into one’s lineup as a primary tell-all of engine health if your spiffy, modern glass cockpit goes Red-X on you.

I thought that for 2.3 oz it sounded like some good informational “need-to-know” insurance, so I bought this oil pressure switch from B&C to incorporate its alarm out state as an input into the AG6.  When the oil pressure is low (as in pre-engine start) a red, flashing “LOW OIL P.” annunciation will alarm (this is an adjunct warning light, not a replacement, of the EFIS-depicted engine instrumentation).

Oil Pressure warning switch

This oil pressure switch actually has 3 electrical connections to allow for a Hobbs meter to be wired up as well, if so inclined.  Here’s the back of the oil pressure switch, showing the N.O., N.C. and COM electrical connection posts.

Oil Pressure warning switch

Lastly — something I’m extremely pleased with is these babies below that were delivered today!  Again, as I mentioned before, after I assessed my warning light system I decided that I would revise my original decision to run all but one pair of LED panel indicators through the AG6 annunciators, in order to make the AG6s strictly inflight/actual warning annunciators. Thus, those devices that I simply wanted to know were in an ON or OFF state would get downgraded to just LED lights again.

Now, I did order a myriad of LEDs in one my of Mouser orders, but my spidey sense told me there had to be something better out there.  After messing about online a bit here & there over the past few weeks, I found these.  They’re simple LED indicators for airline cockpit simulators that I found on Ebay (these are 737 panel indicators).  I wasn’t sure if they would work, but at less than $4 a piece, I figured I would pull the trigger and test them out.  I’m very glad I took a chance!

Non-warning ON/OFF LED Indicators

Again, the red and green indicators don’t photograph well, although the blue and amber lights are fairly good depictions of how they look.  These 4 items are the ones which I wanted their ON/OFF states communicated since –other than the fuel pump under my thigh support– I would have no real way of knowing if they are actually in an on or off state (yes, I could tell if the taxi light is on at night, but how about during the day?).

Non-warning ON/OFF LED Indicators

Best of all, these are low current and very lightweight indicators, with all 4 weighing in at less than 0.05 lbs.  I will run them through a dimmer so that their brightness can be dimmed at night, and turned up to their brightest during daylight flying.  One point of note is that I reserved the brightest LEDs (red & blue) for the ground op devices: START ARMED to indicate when the engine starting system is ready, and the TAXI LIGHT on indicator.  This leaves the FUEL PUMP and PITOT HEAT as the less bright, but still clearly visible, indicator lights for flight ops.  In addition, I reserved the only red light, denoting an actual real hazard, for the START ARMED indicator… since a swinging prop typically ensues immediately after it lights up.  So, although definitely listed in the “great-to-know” category, the other indicator lights (and their associated colors) do not denote hazardous states.


23 January 2017 — First off, when I spoke with Rich at Aircraft Extras about adding new AG6 warning screens (shown below) to a couple of new chips for me, I added a bottle of canopy cleaner and a tire air nozzle extension to the order to optimize shipping costs.

Aircraft Extras order

Here are the 2 new AG6 chips that Rich programmed for me.  To be clear, he just didn’t simply program them willy-nilly, but went off a fairly detailed spreadsheet that I created for him that listed out the majority of the field parameters.

AG6 annunciators' updated chips

The 2 new AG6 chips include a verified screen description number to display Canopy “Locked” (versus simply “Closed”) . . .

AG6 Canopy Open Alarm

And an updated EZ binary version of Landing Brake Up and Down (versus the already programmed Landing Brake “On” and “Off”) . . .

AG6 Landing Brake Down Alarm

Along with 2 completely new alarm conditions and screen displays:  RAM Air Open and Closed (to ensure I close the RAM air scoop to keep FOD out of the engine) and IBBS Low Volts (IBBS-specific low voltage alarm to show the back-up battery is not charging or is under charged).  I had Rich program these alarm screens as yellow since they fall more in the caution category in my opinion, but I can easily change the colors later on if I want.

AG6 RAM Air Scoop Open Alarm

AG6 IBBS Low Volt Alarm


14 February 2017 — Today I spent a few hours on getting my AG6 programming data organized.  I consolidated all the programming parameters onto one sheet per AG6 (they’re labeled AG6A & AG6B), printed them off and stuck them in my Electrical Wire Book right behind Wiring Diagram #18: AG6 Warning Annunciators.

AG6-A & AG6-B programming pages

Since I still had the electrical leads connected to AG6 #2 (AG6B), I decided to go ahead and program it as well.  It took me a good hour to get all the parameters dialed in –there are 32 parameters just for the individual warning screen definitions alone– and another 45 minutes trying to troubleshoot an issue with the very last alarm screen: the STRTR ON warning screen (which denotes a hung-up starter) which for some inexplicable reason [at least to me] is only showing the green STRTR OK screen.  Not gonna cut the mustard!

After no joy in troubleshooting the Starter On warning screen, I emailed Rich at Aircraft Extras, Inc. to get his input on how to fix the issue.

I also whipped together a very quick video to offer a little insight into what I’m up to on these AG6 warning annunciators.  Be forewarned!  The AG6 screen colors & labels don’t show up very well.  But you’ll get the general idea nonetheless.


28 February 2017 — One good thing about not getting this plane built on schedule is that it allows for me to implement really good upgrade mods that would normally mean downtime & increased complexity on a flying bird.  In other words, I can take just a scant bit of extra time and roll these new mods into the build plan in whatever area before I ever start in that specific endeavor.

My build buddies apparently understand that I like bright shiny objects and will take off after them with aplomb if any catch my fancy.  Well, Dave Berenholtz from OZ obviously understands this too well and sent an email asking me if I was aware of what Marc Zeitlin was cooking up in his evil lair.  Apparently Marc was dissatisfied with the standard operations of the Automatic Extension (AEX) feature of Jack Wilhelmson’s EZNoseLift electric nose gear system.  The AEX simply provides an automatic feature of retracting the nose gear after takeoff once the airspeed is above 90 knots, and conversely, will extend the nose gear if the airspeed is less than 90 knots.  Short and sweet.

Well, Marc undertook about a year-long project to refine the AEX system, not just for Jack’s system, but any aircraft actuator-centric system (I’ll note for clarity that in Marc’s quest, apparently the “X” got lopped off the end of “AEX” and now it’s just the AE system). IMO, Marc’s system is fantastic in that by adding another airspeed switch, a throttle “microswitch,” and a laser altimeter, it provides a comprehensive set of parameters that must all be true for the Auto Extend to activate and deploy the nose landing gear:

1: Throttle less than 10% open
2. Speed greater than 40 knots (user programmable)
3. Speed less than 90 knots (user programmable)
4. Altitude at or below 350 ft. AGL

Ok!  Wow, this is truly fantastic news for us Canardians!  I printed out Marc’s description of the system and the electrical diagram and got to work since I wanted to assess how this would integrate into my system.

Initially, this all seemed too good to be true!  Where was the catch?  Well, as always seems to be the case there were two specific problems with this new system: the first in relation to my build and the other, a general operational requirement that I desired, which was offered in Jack’s original system but removed in Marc’s modification.

First, the operational requirement:  Marc’s version offers no backup battery capability since Marc personally uses the ratchet drive backup system to extend the gear in case of an electrical failure.  Jack sells his EZNoseLift systems with the option of the mechanical ratchet drive backup -OR- a small 1.2A backup battery that will lower the gear sans ship’s power if the electrical system fails.  Hmmm….  Since I have the backup battery, this was not a good thing in regards to my system.

Next, as for the integration into my build?  Marc’s version requires a 3PDT switch to control the gear up & down. My already terminated and installed throttle-mounted SPDT nose gear switch is in the “done” column and is perfect for driving Jack’s EZNoseLift system. Moreover, since this is an F-15 throttle handle, how this rare switch is mounted and its metal hat switch form factor make it very difficult to just pull, plug and replace with another switch.  Moreover, I really have to say that I love my throttle handle just the way I’ve now configured it!  On the pic of my throttle handle below you can see (mid-side handle) the stepped-hat nose gear up/down switch.

Also, one thing was clear as I stared down this road of integrating the new parts of Marc’s upgraded system while keeping the best part of Jack’s current system, and that was I really needed to truly understand and have comprehensive knowledge of how both these systems worked.  To be honest, with so many versions of Jack’s system out there, I wasn’t even sure what my switch panel looked like!  I went down to the shop and snapped a pic of the switch panel face . . .

. . .  and the actual wiring of the switches on the backside of the panel in order to identify the correct switches and wiring circuits.

After pondering my gear switch issue for about a day, out of the blue I had a Eureka moment: Duh! just swap out Marc’s required 3PDT switch with a 3PDT relay… right? Problem solved.  Uh, but wait a minute sports fans.  With this being a CANARD gear switch, a problem is presented in simply swapping a switch out with a relay since there’s that pesky “-OFF-” position on our gear switch that doesn’t translate over to a “middle position” between N.O. and N.C. on a relay.  Obviously, on canards we don’t simply use a binary, all-the-way up or down gear position (except for TOs/landings), but use the gear switch to position the nose in a myriad of heights off the ground when parked. Thus, my requirement was to be able to hit the nose gear up/down position, have it run up/down for a few seconds and then move the switch to the “OFF” position to stop the gear from moving any forward.  Again, with most aircraft you simply have an up or down gear position, but we Canardians apparently like to be eccentric! 

I was at the juncture of simply knowing that I wanted to replace Marc’s required 3PDT switch with a relay that I could then subsequently control with my throttle mounted SPDT switch. But how?  Not smart enough in the ways of electrons, I posted my dilemma onto the AeroElectric Connection forum.  Within an hour Charlie England started off his response with a question that gave me my answer: “How about 2 separate 3 pole relays?” Yes, one relay would control up and the other down.  When my throttle-mounted switch was in the middle OFF position, neither relay would be powered on to do any action so the system would be “at rest” . . . or OFF.  I had found my middle position!

[Just as a point of note, since Marc’s 3PDT switch positions were wired to create 2-N.C. states and 1-N.O. state in the up position, and opposite in the down position, it allowed me in the end to only need one DPDT relay and one SPDT relay to replace the 3PDT switch.]

With the switch issue taken care of, now it was time to tackle probably the biggest electrical challenge I’ve ever faced.  I had asked Marc & Jack, et al, on the Cozy forum if there was a way to wire back in the 1.2A backup battery into Marc’s design to provide a means of getting the gear down if a total electrical failure were to happen.  I had some back and forth on a type-of-relay question I had, but nothing on the backup battery except an expressed desire by some to see that “put back into the system.”  With no real response, and having one solved problem (the new AEX system) creating a new problem (no backup emergency gear extend feature), I figured it was time for the proverbial: “Well, if’n you want somethin’ done yer gonna hafta do it yurself!” (Said in Ken Curtis’ Festus voice from “Gunsmoke”).

I spent a day and a half deconstructing both Marc and Jack’s respective systems, and then ala “Tony Stark” (without the flare, billions of dollars, Hollywood CGI or Jarvis) I melded the backup battery feature from Jack’s system into Marc’s new design. Thus, after chasing imaginary electrons around on paper over a couple of days I was finally able to meld the backup battery and emergency gear extension feature back into this promising new & improved system!

After verifying that my new combined design worked, I then cleaned off all my specific extraneous system info to then submit a generic copy onto the Cozy forum.  I received word back from Marc Zeitlin that it would work as per my (actually his & Jack’s) design, with a number of “why-didn’t-you-use-this-component-vs-that-one” type questions, which is great since that’s how system designs are optimized.  So now I have some system design “homework” from Marc that I will attempt to iron out.

Regardless, doing nothing else from this point on (besides buy all the required components!) results in a new baseline electric nose gear system that provides a very usable AEX system and allows me to incorporate the backup battery feature/emergency gear extend feature.

If you’re curious, here’s a final thought on reasons I chose the battery backup system vs. the mechanical ratchet wrench backup gear deployment system: the battery weighs considerably less, takes up no panel space as does the mechanical unit, and most importantly –for me– if I’m working any non-standard issue while in the process of landing, I don’t want to be messing around with a ratchet (which itself weighs as much as the small backup battery) and spending time getting the gear down when the flick of a switch will do it for me.  Finally, a very important thing to consider that I learned while flying in Marco’s Long-EZ is that IF YOU DROP SOMETHING on the floor, it is no longer something of use to you!  And unless you tie off that ratchet handle, it may end up being nothing more than added weight in your airplane while you WISH you had a means to get your nose gear down [just saying . . . IMO!]

[Admin Note: From here on out the above new AEX system will be discussed on the Nose and Nose Gear Wiring page.]


3 March 2017 — Today I had two separate phone calls with Rich at Aircraft Extras, Inc. to finally get these AG6 warning annunciators programmed!  After following some instructions in an email that didn’t work (my fault, I entered a data field incorrectly) I called Rich.  He talked me through some steps and helped me understand a couple of the data fields well enough that I got off the phone to tackle it all again.  Well, the umpteenth time is a charm because it worked!!!  Finally!  So I spent the next 6 hours programming and documenting every parameter for each warning screen.  I then did an operational check on each alarm screen by inputting the amount of voltage that it needed to see to kick off the alarm. Thus, now each alarm screen works exactly as it should… (yeah!)

It was a bit tough there for a while on getting these AG6s programmed, but I’m really glad I stuck to the plan for using them.  I can now say that all my major warning annunciations (non-EFIS) are good to go!  One other thing I’ll point out on my AG6 configuration is that on almost all of them I’ve turned off the “Green OK” screen so that I get just the warning screen & only when it alarms.  Clearly, on the canopy, landing brake and nose gear I wanted positive feedback of what was going on with these components.  I’ll also point out that only those issues that would result in an immediate safety of flight issue, damage to the aircraft/engine, or fire are denoted with a red color.  The amber alarms screens show up clearly visible and are an attention getter as well, but I wanted the really bad stuff (obviously, my opinion here) depicted with red.  Finally, I’ll note that the green screens only come alive when the action they represent has been 100% completed.  For the canopy, note that it doesn’t say “Canopy Closed,” but rather “CANOPY LOCKED.”  Same for the landing brake being stowed away and the nose gear extended all the way down.  I actually had a screen stating “gear locked” (since it solved my double gear up/down alarm entry … see below), but after a bit of thinking I decided that I wanted to denote “GEAR DOWN” since to me that communicates more succinctly where the gear is compared to “GEAR LOCKED”.

Moreover, Marc Zeitlin just released his new version of the nose gear automatic extension system (AEX) which streamlined the signal output from the nose gear system with a single wire to each nose gear status indicator light.  What I had to take into account however was that with these one wire outputs it meant one input for the respective gear up and gear down signals.   This meant I had to parse out the normally paired GEAR UP and GEAR DOWN warning screens and put them on separate inputs.  Well, the way the AG6 works is that each alarm has a specific screen code, and the screen code can only be used once in the system since it points all the data to that code.  Well, luckily I communicated what I wanted and Rich talked me through how to “trick the system” by using all the descriptive parameters of the GEAR UP/GEAR DOWN reference number under another unique alarm code (I overwrote the vacuum pump alarm code since I definitely will not be installing one of those in my plane).  With two separate GEAR UP/GEAR DOWN alarms on Annunciator #1, all I had to do (yeah, right!) was turn off the alarm screen (red or green) that I didn’t want to see for each separate GEAR UP/DOWN alarm.

[As a point of note, there were 2 EZ workarounds for the above issue even if Rich hadn’t helped me out.  As I mentioned before, I could have used “GEAR LOCKED” which is a different screen number.  Also, I could have programmed one gear condition on AG6 #1 and the other on AG6 #2, although I did want my final gear positions annunciations in the same place… ALTHOUGH, to further convolute this: my “GEAR UP TRANSIT” and “GEAR DN TRANSIT” indicator lights (not AG6) will not be colocated on the panel so that peripheral vision and color tell me gear moving up or gear moving down … nuff said!]


12 March 2017 — After pulling the trigger on my Garmin GNS480 I was doing some research on wiring it up when I found a post on the Dynon forum from a Dynon tech saying that the Dynon 2-place intercom should no longer be used to control two radios. The huge selling point for me in buying the Dynon intercom was SPECIFICALLY that it was designed to handle TWO radios!

In a phone call with a very knowledgeable RV builder, Don, who I met on the Aeroelectric Connection forum and who happened to also be selling a Garmin GNS480, I pointed out my recent discovery regarding the Dynon statement on their intercom.  Don stated that he knew a number of RV drivers that were using this exact intercom to control two radios and they seemed really happy with their installations.  He further stated that since he was good friends with Rob Hickman, founder of Advanced Flight Systems, that I should give Rob a call to confirm this not-so-good information.  So, I did just that.

Rob and I talked for a good bit, and he did in fact confirm this disturbing news regarding the Dynon intercom (AFS sells the same exact intercom, and yes, these companies are now one….).  According to Rob, he knew of no work-around and that unless I wanted to keep my COM2 radio turned off or the volume all the way down, I would almost certainly get bleed over and crosstalk between the two radios.  In essence, he said the intercom simply came down to being a hopeful design in theory, but not a good one in practical application [as an aside, none of the advertising that I saw on this intercom changed to state that is was no longer a viable solution for controlling two comm radios].

I looked around for other alternatives but I was really relying on the size and touted functionality of this intercom as the linchpin of my two comm radio design in my Long-EZ. Every audio panel I found simply took up too much panel real estate that I just didn’t have, and the features were either way too much or way too little for what I had already dialed in with the Dynon intercom.  I figured in my mind there needed to be a way to make this little intercom do what it had been advertised to do.

Well, I posted my question on the Aeroelectric Connection forum (if you’re not on it, I highly recommend it) and got a response the next day with a link to the VAN’s forum.  There, an RV builder who moonlights as an electrical engineer (or is that vice versa?!), Deene Ogden, who had the exact answer to my issue.  In the Dynon intercom manual it merely has you hook up the intercom to common on a switch (or relay) with one side going to the COM1 radio and the other going to the COM2 radio.  Well, that results in the crosstalk issue I highlighted above.  The answer is simply go bigger, as in a bigger switch or relay.  Instead of a single pole relay (the white one below) I needed a 3 pole relay to also switch the Audio OUT of each comm radio into the appropriate pin on the Dynon intercom.

Thus, with the relay off (my control stick switch in the center off/COM1 position) the relay is as follows (1-3 represent the C-NO-NC set for each pole):

  1. PTT: COM1 (NC)
  2. COM1 Audio In: On/NC
  3. COM2 Audio In: Off/NC (pin not connected)

When the relay is powered on (my control stick switch moved up to the ON/COM2 position) the relay is as follows:

  1. PTT: COM2 (NO)
  2. COM1 Audio In: Off/NO (pin not connected)
  3. COM2 Audio In: On/NO

This is reported by Deene and others to do the trick, so as you can see above I bought & rewired/re-soldered the connections to a 3PDT relay.

I also have been doing a bit of verification on my headset jack connections, so below I used the wiring harness that I received with the intercom that I bought from Dick Rutan to test the headset jack housing configuration (yes, I’m name dropping because it’s pretty cool that I’m using something Dick Rutan constructed to check out my configuration!)


23 March 2017 — Today’s post is just a quick update showing a couple cable builds.

I soldered 2x 22AWG wires to a 9-pin DSub connector to make up the connector that all the panel components that require an external dimming control will tie into.  The black wire with the DSub pin is a ground wire to the avionics ground bus (G5) for the dimmer module shown at the bottom of the pic below.

Also, although I didn’t make this cable, I thought I’d show it just to hint at a bit of progress on the GPS navigator install front.  I ordered a 12′ RG400 cable with a TNC connector on one end (mounted to the GPS antenna in below pic) and a 90° BNC connector on the other end.  Since I only need around 6′ for the GPS antenna, I’ll use about half of the RG400 cable and the BNC connector somewhere else.


24 March 2017 — Today I started working on the brackets for both the P4 throttle connector bracket and the Intercom bracket.  As for the Intercom bracket, I decided that I’ll most likely make the right pilot armrest removable to gain access to intercom wiring.  So the intercom mounted in the bracket will remain on the sidewall, allowing the armrest to be pulled away from it.

I started off by determining the dimensions of each bracket, and then marked up a 1/16″ piece of G10 with these dimensions.  I then drilled the 1.5″ hole for the Throttle P4 AMP CPC connector.

I then cut the rectangular hole for Dynon Intercom.

And then test fitted both the Intercom and the P4 connector, with both fitting just fine.

After prepping the holes I stopped for the evening.


26 March 2017 — Today a little sideline tasker I completed was to drill and flox in place this Adel clamp for the Throttle electronics cable that terminates into the P4 Connector.

Then, after pre-drilling the 4 screw holes and the 8 holes for the K1000-6 nutplates, I did a final trim & sanding on the Dynon Intercom bracket.  I determined where its position needed to be and marked the sidewall.  I then 5-min glued the intercom bracket to the sidewall.

I then laid up 2 plies of BID (pre-pregged of course!) on the top side of the intercom bracket, and peel plied it.

I pretty much followed the same steps for the Throttle handle electronics cable P4 connector bracket just forward of the instrument panel on the left side.  After 5-min glueing it to the wall, I laid up 2-plies of BID and peel plied it.


27 March 2017 — I started off today by razor trimming the bracket for the Throttle handle electrical cable P4 AMP CPC connector.

I did the same thing for the right armrest-mounted Dynon intercom bracket that I just glassed in using 2 plies of BID.  On both of these brackets I was able to knife trim them right at their curing sweet spot, so the glass was definitely more on the cured side, but still just a tad pliable . . .  so it cut well.

I then laid up 2 plies of BID on the bottom side of the Throttle handle electrical cable connector bracket.  I used a small flox fillet in the corner and peel plied the glass junction with the sidewall.

I did pretty much exactly the same thing on the Dynon intercom bracket only for a bit more strength I used 3 plies of glass on the bottom side.


28 March 2017 — After the BID glass cured on the Throttle Handle electronics cable P4 connector bracket, I pulled the peel ply and razor trimmed the glass.  As I was redrilling the connector mounting holes I set this connector body in place to ensure the spacing was good.

So, here’s the final product for Throttle Handle electronics cable P4 connector bracket.

I then did pretty much the same thing for the Dynon Intercom bracket: pulled peel plied, razor trimmed, redrilled holes and sanded it all to clean it up.  I then set the intercom in place to see how it fit.  I’m definitely happy with how this intercom mounting is turning out so far.

What I’m not happy with is the forward right bracket nutplate.  It’s giving me fits and I’m going to have to drill it out and remount just a hair forward and inboard for it to align correctly with the intercom mounting hole.

Of course the other 3 nutplates went in without any issues, unlike the last one!


5 April 2017 — Today I finished getting the Dynon intercom installed into the intercom bracket that I just glassed to the sidewall.

I hate to admit it, but with the curve of the sidewall that I failed to take well enough into account, I had to move the forward two K1000-6 nutplates inboard just a hair to get the intercom to mount correctly.  The front nutplates were off a bit, especially in conjunction with the aft 2 nutplates.

The lower body of the intercom just barely kisses the sidewall on the forward side, which is close to perfect as far as what I was looking for on the angle of the intercom.  I’ll stick a piece of double-side sticky tape foam at that corner and it will keep everything nice and tight, with a little separation between the intercom corner and sidewall.  In addition, in the pic below you can see that the stick is all the way left that it can go before the bottom of the control stick bracket hits the sidewall. Sitting in the airplane this action would most likely be near impossible to accomplish at this severe angle of bank since the pilot’s leg would be in the way (at least mine would be!).  Regardless, my point is that even with the control stick maxed out to the left, there is still clearance between the lower control tube and the lower intercom box.

Moving on.  Later this evening I figured out my big power cable reroute which is essentially a Bell Curve looking deal that goes up & over my right rudder pedal travel path.  After having to move the rudder pedals forward, and having skooched them in a bit close to the sidewalls, I could no longer run the big power cables along side the right rudder pedal as I had planned for originally.  The fit was very tight before, but after moving the pedals forward it just simply wasn’t going to work.

Rerouting the big power cables worked out for the best anyway though, considering if I had gone with my original plan I might not have known how tight the rudder pedal and big cable clearance situation was until I tried to adjust the rudder pedals forward for a taller pilot (or if I hit another growth spurt… ha!)

Thus, the process of rerouting the big power cables is the same as eating an elephant: I’m doing it one bite at a time! Tonight I drilled the first new hole in the nose sidewall and prepped it for inserting a Rivnut.

I then prepped the Rivnut by taping up both ends, and then floxed it into the hole.


6 April 2017 — Here’s a shot of how my first added Adel Clamp for the big power cables traversing the length of the fuselage worked out.


7 April 2017 — Today I continued to work on securing the 2 big power cables (one + power and the other – ground) that start in the nose battery compartment and end at the firewall & starter, respectively.  Again, I had to reroute these cables up and over my rudder pedal (you can see in the pic how they get in the way if not wrangled) in an arch/ Bell curve fashion.  With the 1st added Adel clamp in place, I marked the position for the 2nd additional Adel clamp.  Note in the upper right hand corner of the pic my markings for the Atkinson pitch trim actuator mounting.  You can see that I need to get these power cables as high up on the nose sidewall as possible, but still remain clear of the pitch trim actuator mounting.

After marking the spot, I then drilled the hole in the nose sidewall.  This area was a bit tougher to drill since, if you recall, that indented area that this hole was placed has additional plies of BID to beef it up for the mounting of the pitch trim actuator.

I then performed the “poor man’s” knurling of the 10-32 threaded aluminum insert that will be used to mount the Adel clamp in this location.  I wanted to use this threaded insert since it’s a bit more robust than a RivNut.

I then whipped up some flox and mounted the threaded insert assembly (including a taped washer mounted to it with an AN3 bolt).  I then clamped it in place to ensure it would be level with the surrounding sidewall surface when it cured.

Here’s a shot about 10 hours later after it cured to about 80-90%.  The flox was still just barely soft enough to be easily removed with a razor blade (there was an entire ring of it around the perimeter of the taped washer).



10 April 2017 — Today I determined the location of my next big power cable Adel clamp hardpoint for the pair of big battery cables exiting the nose and traversing the length of teh fuselage.  I marked the location with a dot as you can see below, and then I drilled out the hardpoint hole in the sidewall.

I really didn’t get any other in-between pics, so with the same cure rate as the BID for the AEM box’s Clickbonds, by the end of the evening the big power cable Adel clamp hardpoint flox was cured and the threaded insert set in place.


12 April 2017 — Today I identified another location to mount an Adel clamp hardpoint for my big battery power cables coming out of the nose.  I marked and then drilled the hole for the hardpoint.

Here’s the same shot, but I added the threaded insert in the pic.

I whipped up some flox and mounted the threaded insert in the hole.  I then clamped a board onto the threaded insert to keep it in place.

I grouped the pics in this post by topic, not chronologically, so I’m jumping ahead about 8 hours here to show the nearly completely cured flox.  I cleaned up the flox that oozed out around the taped up washer.

A couple of hours later I removed the bolt and popped off the washer.  I cleaned up the flox, finishing up the install of this hardpoint.

Here’s my progress so far on getting the big battery power cables routed out of the nose battery compartment –with clearance for my right rudder pedal– to my immediate goal: to the instrument panel.


13 April 2017 — Today I drilled the last hole in the sidewall for what I’m calling “Phase I” of routing the big battery cables from the nose battery compartment to the instrument panel.  Again, I’m working everything furiously from the instrument panel forward to get everything I can position, mounted & worked for the upcoming closing up & glassing of the nose.

I placed this new big battery cable Adel clamp sidewall hardpoint about equidistant from the existing Adel clamp hardpoint I mounted in the bottom right access hole on the panel for the control stick cable (lower right of the pic below) and the new Adel clamp I just mounted a little aft of F22.

For this Adel clamp hardpoint I chose a RivNut threaded insert and prepped it.

I went ahead ahead and floxed the RivNut into the hole and clamped a 1×2 in place to keep it firmly pressed against the sidewall.

Jumping ahead quite a few hours, this is the big battery cables’ Adel clamp hardpoint after the flox cured.  I cleaned up the flox from around the RivNut face.

The floxed RivNut was definitely in the sidewall securely, so I mounted the Adel clamp for that hardpoint, and also another big cable Adel clamp to the pre-existing hardpoint that I had in place for the control stick cable.  With this latest hardpoint install, that completes my “Phase 1” routing goal of getting these big battery cables from the nose battery compartment to the instrument panel.  Another item off the list!


18 April 2017 — Today I cleaned up and shaped the right battery tray flange in preparation for adding a tab (smaller flange) just inboard of the right flange to allow me to mount the taxi light mini-actuator to the battery tray via these right side flanges.

[NOTE: For construction & configuration of the battery tray, see Chapter 13 – Nose & Nose Gear]


29 April 2017 — I started off today writing out & organizing my required task list for the next couple of days.  I decided to continue the work that Marco and I had started on –the P5 connector (stick grip)– and knock out another 5-6 wires.

One of those wires in that connector is the wire that goes from the taxi light switch to the taxi light actuator relay in the nose (RL011).  I terminated the wire with a pin and then quickly realized that I was supposed to have TWO (2) wires in that pin terminal: 1) one going to relay RL011 and, 2) another going to the “TAXI LIGHT” LED indicator on my panel.

Being cheap and not wanting to waste a pin terminal, I decided that instead of cutting off the pin and reterminating the wire, that I would simply find the point on the wire that I had just run that was physically closest to where the taxi light ON LED indicator would be located.  I then stripped away the insulator on the wire I had just run, cut a new 22AWG brown wire with blue stripe, and solder-spliced it into place.

Since these wires both carry positive current, I covered the solder splice joint with a nice long piece of red shrink tube.

I then decided to terminate the other end of the brown & blue wire with a mini-connector that came with the LED indicator lights.  I realized that I had not finished identifying all the LED indicators, so I took a few minutes to update the info on my panel switches, indicator lights, LEDs, components page.  I then took another 15 minutes, cut up the labels I had printed out quite a while back and labeled each of the LED indicator lights.  With these minute tasks out of the way, I then terminated the brown & blue wire and slipped it into the mini terminal.


1 May 2017 — I started off today wiring up the remaining cavities in the P5 connector, which routes all the wires for the pilot Infinity control stick grip.  The proof is in the pudding when completing these bigger wiring tasks, as so too it is when you finally get down to wiring up these connectors to the end components.  I spent a fair amount of time working over the pinout diagrams beforehand to make sure they were as spot-on as possible, but when the wiring starts –like any best laid plans– things change. Wiring sizes, wiring colors, wire size or color availability on-hand, routing, etc.

In addition, since my new nose gear system is operational, I’ve been scavenging the longer, terminated wires off of the old nose gear wiring harness to use in both the P5 (and P4) connectors.  This changes the wire colors sometimes since re-utilizing good terminated wires that may have a different random color than the first random color I chose is more important to me than sticking to an arbitrary random color!  To be fair, some colors (power & ground) are a bit more sacrosanct to me, but the other random stuff I swap out in a heartbeat.

As you can imagine, there are a lot of rabbit holes to chase down to get all the wiring accounted for in these harnesses.  With the P5 (control stick) and P4 (throttle) connectors being two behemoths in this wiring system, they really do interface with a lot of system end components. For example, although not a jaw-dropping number, if you look at the wires (there’s 3) in the lower left corner of the pic below of the associated Trio Pro Pilot Autopilot wiring harness, one goes to the P4 connector and the other two are terminated together into the P5 connector.  To terminate these wires, a general idea of the routing and a quick mockup is in order to figure out the length. Obviously the length doesn’t have to be perfect, but longer is always better (EZ’er) than shorter.

After figuring out, verifying, and finalizing all the wiring connections, terminations & routing on the P5 connector, I then set my sights on the P4 connector.  It too deals with a myriad of electrical system end components in and around the panel, including Triparagon-mounted items, GNS480 GPS, and even the Landing Brake (see below).  It took me a bit of time to verify the connections on these wires as well, but I confirmed all that was good, and tweaked a few things that had been superseded yet not annotated (by me!).

All in all it was a good day, and I’m really glad to have knocked these two connectors off of the list of prerequisite items that need to get completed before I start on the nose top.  To be certain, in each connector there are a few wires that I actually didn’t mount into the actual connector cavities.  However, I did cut all those wires to length and terminated them, so they are ready to go.  This might help explain why you don’t see the wires wrapped with flightline tape nor any of the cable clamps mounted.

One thing that finalizing the P4 connector wiring above allowed me to do with minimal extra effort was to test out the operations of the Landing Brake using the throttle-mounted landing brake switch.  I haven’t actually run the landing brake in (I think) going on almost 5 years now!  So, to knock some of that rust off . . .  here goes:


2 May 2017 — Today I started off with identifying the location of the landing brake relay pack hardpoint just aft & low of the P4 Throttle handle cable connector bracket on the left side of the avionics bay, just forward of the left arm rest.  I then found a RivNut lying around and scarfed it up to press into service to hold the 2 back-to-back metal cable clamps that had once resided on the forward side of the NG30 cover to hold in place Jack W’s EZNoseLift system relay pack.  Since my relays for the new nose gear are nice & tucked away in the RCU, it allowed me to reutilize these clamps to secure the inline relays that Jack W. uses on his landing brake system.

I Dremeled some grooves into the RivNut side for gripping, screwed on a taped-up washer for mounting, taped up the open end with duct tape, and then hit it with some Acetone to clean it up.

I then drilled out the hole and prepped it for inserting the RivNut hardpoint.

I used some fast hardener with the MGS 335 that I still have on hand and floxed ‘er in.  I then clamped a 1×2 stick to the panel to keep the RivNut firmly in place.

A little while later. back to the landing brake relay RivNut hardpoint: here are the mounted clamps after I pulled off the taped-up washer and cleaned up the flox remnants from around the RivNut opening.

I then used 2 zip ties to secure the inline landing brake relay pack in place.  After about 30 minutes, I then cut these zip ties to allow me to remove the P4 connector to take it upstairs and finish terminating 5 wires (4 to the roll trim relay board with #5 being roll trim reporting to the GRT HXr EFIS … all on the Triparagon).  With these 5 wires terminated, my P4 connector is really officially finished!

I then spent a good 20 minutes assessing the fit & mounting location of my GNS480 mounting bracket, or “tube” as Garmin calls it.  I placed the tube in position against the back of the instrument panel, allowing clearance for the sidewall, then traced around the front edge of the tube onto the back panel surface.  I then made some measurements & annotated those for later use to determine final mounting positions for panel components (Trio autopilot, EFIS, clock, etc.)

With my shop tasks done for the evening, I then removed the Triparagon from the plane and took it upstairs.  You see, when Marco was here I thought I may have inadvertently fried one of my AG6 warning annunciator units.  So, I spent a few minutes hooking them up to test them out, and thankfully both tested out fine (Lesson REITERATED: Always use a fuse… I’m fairly certain its selfless sacrifice saved my AG6!)

I then spent a couple of hours really making the final touches on 6 of my wiring diagrams. As I’m knocking out the physical wiring on these connectors, it really allows me to fine tune the wiring diagrams with wire gauges, wire colors, physical wire routing, connector pin numbers, wire labels, and component IDs (e.g. I just recently finalized my LED indicator light ID’s).  I printed all the newly updated wiring diagrams out and then sent the files to myself via email as a quick backup for each diagram.


26 May 2017 — Last night I took the small bit of left over epoxy that I had, whipped up some flox, quickly prepped 2 Clickbonds, and floxed them to the corner of the fuselage in a couple spots to secure the pair of big electrical cables going from nose to aft.  I also embedded a RivNut (not shown) in the pilot seat bulkhead, for an additional Adel clamp for these big battery cables.

So, before I mixed up the epoxy to glass the 1 ply BID layup on the fuel sump right front wall extension piece above (today), I made up two small 2-ply BID pre-preg setups with ~2″ x 2″ plies to secure the Clickbond assemblies that I floxed in place last night using the leftover epoxy.  I laid up a 2″x2″ 2-ply BID layup over the first Clickbond, which is located in the area below the pilot control stick.

Here’s a closer look.

The 2nd Clickbond lies halfway between the pilot seat bulkhead and CS118, aft control assembly mounting mini-bulkhead.  It also got a couple plies of BID.  As you can, I also peel plied both of these Clickbond BID layups.

Still using the same epoxy as the above layups, I whipped up some more flox to attach yet another Clickbond for the big battery cable pair, and also embedded another RivNut in the GIB seat bulkhead for the same purpose.  I know that I’ll need one more Adel clamp in the Hellhole for the big battery cable pair, perhaps two, but that will be it for securing these mondo cables up to where they either attach (-) or pass thru (+) the firewall.


27 May 2017 — Today I’m happy to report that the big pair of yellow cables are finally secure from the nose to the back seat.  Again, I will most likely have to secure them in one or two places in the Hell Hole, but beyond that, the task of routing these big suckers and securing them is complete!

Starting from the front part of the aircraft, here are the two newly mounted Adel clamp hard points in the pilot seat area: one Clickbond (forward) and one RivNut (aft).

Here’s a closer shot of the Adel clamp Clickbond hardpoint.

And a closer shot of the Adel clamp RivNut hardpoint.

I also mounted a Clickbond just aft of the pilot’s seat as you saw in yesterday’s post.

Here’s a clearer shot of that hardpoint with an Adel clamp mounted & in use to keep the big power cables secure.

And here’s the RivNut Adel clamp hardpoint in the lower right side opening of the back seat.

A little wider shot reveals the Clickbond that I floxed in place last night.

A bit later, I covered the Clickbond addition with 2 plies of BID and some peel ply.


30 June 2017 — I started out today working on the GIB PTT button configuration & construction of a front plate for both the GIB PTT button and GIB headset jacks, all which will reside on the front of the left GIB armrest.  It may be a bit hard to tell, but the greenish blob coming down from the top of the pic below is the front of the left GIB armrest.  Top of armrest is to the left, with the PTT button resting in the notch I created for PTT button clearance.

I positioned the PTT button notch where it is to get the PTT button as far up into the inboard corner of the armrest front face for easier “mashing” of the button any time the GIB is going to use it.  However, to stay clear of the PTT button being inadvertently pressed or an open mike situation, I’m recessing the button so the top of it is just below the face of the armrest front face.  Thus, at the center bottom of the pic is the piece of 1/16″ G10 I cut as the armrest front face cover plate, and in the corner where the PTT button will go, I notched it and shaped a piece of Divinycell foam with a 1/2″ diameter hole for the PTT button to sit in.  I 5-min glued the foam piece in place, then when cured I radiused the perimeter edge of the hole.

All this is sitting on a piece of 1/4″ phenolic which I drilled a 0.609″ (39/64″) hole into for the actual securing of the PTT button as it’s press fitted into this hole with some Silicone RTV to lock in nice & tight.

Since the left armrest front tapers aft at the bottom, I tapered the foam PTT button recess housing so that the PTT button would sit parallel with the top of the armrest for clearance on the internal side of the armrest.  Here you can see the PTT button set in place where it will get mounted.  If you look just forward (left) of the ID label sticker you can see the wider 0.609″ flange that will get press fit mounted into the phenolic.  The phenolic piece will of course get floxed to the aft side of the tapered foam recess housing.

I then tested the fit of the assembled armrest front face piece in the notched corner I created in the armrest.  When finished, this front face piece will be an integral part of the sidewall bracket that remains on the fuselage sidewall when the armrest is removed.

I had to do some very light sanding after I drilled the 0.609″ (39/64″) hole for the PTT button to fit, which it did with a reasonable amount of force. Perfect.

Again, the physical mounting of the GIB PTT button will be in this 1/4″ phenolic block piece that itself will get floxed to the aft side of the foam recess housing that is attached to the front face piece.

I then cut out the phenolic block and trimmed it up.  I then mocked up the PTT button secured in the phenolic block, set in place where it will attach to the foam button recess housing, all with the front armrest face piece set in place.

Another shot of the recessed PTT button in the left GIB armrest front face piece.


7 July 2017 — Today I started out by cleaning up the 2 small layups that overlap onto the two internal sides of the PTT 1/4″ phenolic mount and the foam/flocro recessed PTT button housing junctions.

I then identified my desired positions for the headset jacks and drilled the two 3/8″ holes for those.  I then of course installed the jacks to ensure they fit  . . . which they did (yeah!).

So, here’s the forward Left GIB mounting/PTT button/headseat jacks bracket that will reside on the front face of the left GIB armrest.

Here’s the business end showing the internal side of the bracket.  Yes, it’s a bit tight in there, but it all fits fine.

And here’s an “action shot” showing the armrest front faceplate set in place.  I still have just a bit of cleanup work to do to get it all squared away cosmetically, but structurally –beyond actually installing it to the sidewall– I’m done.

To verify that there were no clearance issues with the headset plugs, I took the bracket assembly upstairs and hooked up one of my headsets.  Looks good!

Here’s close to the actual angle that the GIB will experience when plugging in their headset.

And from the other side.

The internal clearance with the plugs installed is fine as well.


15 July 2017 — Today I started out by sorting through & figuring out LED lights for the GIB area floor area lights that will be located in the fuel sump tanks’ low fuel warning sensors covers.  After figuring out the LEDs, I then updated my cockpit lighting wiring diagram.


17 July 2017 — Today I digressed a bit to knock out a small task that while not needing accomplished just now, curiosity got the best of me.  I drilled and riveted 2 nutplates to the GIB cigarette lighter charger that will be used in mounting it later on.

Here’s a shot of the backside of the riveted nutplates.  Note the markings alongside each nutplate were the mounting flange will get trimmed.


18 July 2017 — Today I trimmed the edges of the GIB charger mounting flange immediately adjacent to the riveted nutplates.

Here’s a closer look at the trimmed flange on the GIB charger mounting flange.


25 July 2017 — [Obviously the RAM mount is not an electrical device, but since it has to do with mounting what will be an electrical device, and arguably even avionics these days for the GIB, I listed it here in Chapter 22].  Today I thought I would also knock out a quick side task and mount the GIB RAM air mount on the aft upper center of the pilot’s seat.  Now, I already have one that I mounted on the aft side of the pilot’s headrest, but I need to assess that one further since it may very will get moved or removed altogether depending on how well it plays with the canopy’s reinforcement crossbar.

Since I don’t have any extra of my preferred CG-style aluminum hard points, I simply used 2 RivNuts diagonally opposed in opposite “corners” and floxed them into the holes I made below (I’m using 4 screw hard points on this mount).  Later I’ll add the other 2 screw hard points.

Here’s a shot of the RAM air mount with the RivNut hard points mounted and floxed into place.  As you can see, I used my handy German clamp to keep the RAM air mount in place while the flox cures.

A couple hours later, after the flox had cured, I pulled off the clamp to reveal a nice “half-mounted” GIB RAM mount installed on the back of the pilot’s seat.

I then removed the ball mount and did a quick cleanup on the RivNut hard points.  Again, I’ll add 2 more hard points when I have them on hand.


26 July 2017 — I also marked & drilled the last 2 holes for mounting the GIB RAM mount.

I then floxed the last 2 of 4 hard points for the final install of the GIB RAM mount.

Also, today I floxed in a Clickbond (just above the forward fuel line mount) and a hard point (under the 10-pound dumbbell) for securing the small wire bundle that will traverse the fuselage from the front to the back of the fuselage.


27 July 2017 — I started off today spending about 45 min updating my cockpit lighting electrical diagram and printing it out.

I then removed the GIB RAM mount to inspect the mounting holes and do an initial cleanup.  I still need to fill some areas around the inserts with some more flox/micro, but they all look good.

I then remounted the RAM mount to see how it fit and how it looks.  I’ll say that I’m very happy with this install.

I also checked out my other hardpoint insert from last night.  This hardpoint is for the small wire bundle [meaning a bundle of small wires, not necessarily a small bundle . . . ] that will be routed just under the top edge of the kick plate that will run along the right side.  I was going to put an Adel clamp here, but with the slant of the top of the fuel line mount, it would just be too bulky.  So instead I mounted a metal tab that I’ll then be able to secure the wire bundle to.

Here’s a shot a bit later after the 2 plies of BID that I laid up over the forward small wire bundle Clickbond cured.  I then set an Adel in place to check out the fit.  And yes, I realize that I still need to get in there and clean up the forward fuel line mount since it’s looking a bit messy.

Here’s another shot of the forward small wire bundle Adel clamp.  This too will be hidden from view when the kick plate is installed (see Chapter 24).


8 August 2017 — Well, I’ll be darned if another task didn’t blow up into a huge project.  I had planned on using this morning to finalize the electrical stuff I did yesterday: print out the diagrams and connector pinout sheets and verify a few connections.

I did just that and then, although electrical in nature, got back to working on the GIB area by working on the circuit for the GIB cabin lighting.

My GIB area cabin lighting essentially consists of 2 zones:

  1. The upper zone lit by a red/white LED map light.
  2. The lower zone lit by red/white LEDs mounted in the sump low fuel sensor covers.

I decided to start on the switch side which consists of a mini-toggle that allows for selecting all GIB area lights to be lit either RED or WHITE.  This then connects to a rotary switch that allows the GIB to determine which lights are on or off with the following positions:


So I got both switches configured & initially wired up, and all was fine until I had to tie in the LED map light.

As you can see the map light has 3 wires: white, red, and green.  I mistakenly assumed that the separate, selectable red and white set of LED lights were powered by the red wire for the red lights and the white wire for the white lights, with the green wire (maybe I’ve spent too much time installing house light fixtures!) being the ground wire.

Which is exactly how I had it drawn up for years!

But, alas, the manufacturers of these map lights pulled a switcharoo and pretty much made the install specific to powering the lights through an ON-OFF-ON switch with each light being controlled by closing that color (red or white) circuit to ground with the switch. You can see an initial swag I took at this in the lower right corner in the pic above… albeit I lopped off the ground symbols when I cropped the pic.

I played around with it for a while, getting a bit pissy having to “waste” time on a small luxury item as this GIB map light.  Moreover, all day my Chi was apparently way off center because I was letting a ton of that critical electrical smoke that must be contained out of as sundry items such as relays, diodes, wires . . . you name it! I clearly had the reverse midas touch so when I was done creating smoke by incidental shorting of wires, etc. I decided to dare not touch the plane nor attempt any glassing later in the evening!

Although I did –after much effort, angst, creative use of expletives, persistence and hard thinking (which was like pushing a brick wall!)– finally tested out a good circuit for the GIB LED lights, which took a few hours and involved incorporating a spare small DPDT relay I had on hand (don’t ask how long it took me to find it!).  BUILDERS HINT: Install the diode in the circuit the correct way!!  Ask me how I know . . .

The challenge was that I already had the entire circuit designed and mostly constructed, so I was adding on to the tail end of it and couldn’t really pick my power & ground wires from scratch (without adding more long wire runs or even more complexity).  I eventually got it, and thus I present to you the new GIB LED lighting circuit:


9 August 2017 — Today I started by finishing up annotating the J3 PQD connector color codes, which of course meant digging in the GRT Mini-X manual and also seeing what the wire colors were that I physically had on hand.  Since I had the Mini-X wiring harness (15-pin D-Sub) in my hand, I decided to go ahead and knock out the wire harness connector for my Mini-X.

First, I had to pull a few wires for connections that I won’t be using.  These few specific wires came installed on the GRT-provided 15-pin D-Sub connector/harness.  I measured the required wire lengths between the back of the Mini-X and the J3 PQD connector on the Triparagon.  I added a couple of inches for ‘insurance’ purposes and another half inch to account for the multiples pairs that would be twisted together, then ended up cutting all the wires down to 10.5″ long.  I then crimped some D-Sub sockets onto 3 wires for the magnetometer (since it’s optional) and terminated them into the Mini-X D-Sub connector.  I then twisted the appropriate wire pairs together using a small portable drill.

I then terminated the ends of the wires with D-Sub pins on the opposite end from the Mini-X connector and performed a continuity check on each wire… all good.

Then, on the Mini-X side of the harness I installed the D-Sub backshell.

Having also just received some more correct-sized wire labels, I then labeled the 2 individual wires and the 3 wire pairs.

For the panel component labels that run ONLY between the panel components themselves, or the panel components and the PQD connectors, I’m using a bit more simplified wiring label scheme than the one I use for the rest of the plane: essentially providing just a pin number, the wire function such as “power” or “DU link” and an opposite pin number, all separated by dashes.  Obviously, on the panel I’m looking at the wire runs from the back of the given device and seeing its termination point just a scant few inches away… all the info is there for me to see straightway, except the pin #’s and wire functions. So, for example, the lone magnetometer signal wire label goes like this:

10-MAG SIG-9

Pin 10 on the Mini-X EFIS D-Sub connector, the truncated description as to the function of the wire, and Pin 9 on the J3B PQD D-Sub connector.  Short and sweet.  If a twisted pair is getting labeled, I simply add both pins on each side separated by a “/” (aka 11/12).  I’m still sticking with the more robust label scheme throughout the rest of the plane which allows me to determine where the wire is coming & going, what devices it goes to (points A & B) and what pins it connects to at each end (typically power, ground or data signal).

Here’s a shot of the Mini-X wiring harness, minus the D-Sub 15 backshell (which is on order) for the J3B side.


10 August 2017 — Today I determined the size of the phenolic LED light mounting reinforcement plates inside my fuel sump low fuel level sensor covers.  I then cut them and then 5-min glued them into place (after I removed the paint and sanded the glass where they were mounted inside the covers).

I then determined where the 2 LED holes would be situated, then drilled the holes.  I tested out the angle of the LED light beams, so when I drilled the holes I made them a bit more horizontal in comparison to the aircraft waterline.

With the LED mounting holes ready, I then prepped the LED lights for mounting by soldering the red & white LEDs and wires, including a 470 Ohm resistor on the shared ground wired.

I then added heat shrink to secure & protect the solder joints.

Although the pic below looks like you’re looking down into a fiery volcano, I included this representative shot of the red LED test lighting.

Here’s the white LED test.  Again, the light showing up in these pics is more drastic, contrasting and harsh than what is really viewed in person.

Here are another couple shots of the sump low fuel sensor cover LED floor lights from the front, facing the camera (which I shot at an angle so they wouldn’t “blind” the camera).

Again, this is a representative view of the red & white LED lights glued in place into the right sump low fuel sensor cover.  The left looks pretty much the same of course.


12 August 2017 — Today I focused on getting the cable runs to the GIB headset jack squared away, primarily at the Dynon Intercom harness connector.

After doing over an hour’s worth of research and brushing back up on the intercom wiring, I then cut the wires to length, stripped the wires and then added shield grounding pigtails by using ground solder sleeves.

The pilot and GIB Mic/PTT wires share a common ground at Pin 2, so I went ahead and did a solder wire splice to add a small length of 20 AWG wire to the 2 shielded wire ground wires.  BTW, I used the Bob Nuckolls’ technique for solder splicing 2 wires together.

Here’s my soldered wire splice.

I then added a piece of shrink wrap over the soldered joint.

Here’s a shot of my Dynon Intercom wiring harness . . .  so far!  You can see that I labeled the main cable insulation and terminated the individual wires with the included D-Sub sockets.

Wrapping up the evening, I terminated the sockets into the Dynon Intercom 25-pin D-Sub connector.  I also stripped and heat shrank the GIB headset jack ends (the sides in the left GIB armrest) of the cables in preparation for installation.


14 August 2017 — Today I tested out one of my ELS-950 sump low fuel level sensors.  Here’s a video showing how it works.

Today I installed the sump fuel sensors that are situated on the front of the sump front wall. I then taped up the sensor wires to keep them out of the way for when the covers are installed.

I then spent a fair bit of time labeling all the left and right sump low fuel level sensors’ wires.

I combined the 2 sensor ground leads into 1 wire by solder splicing them together.  Here they’re prepped to be soldered.

And here the ground wires are solder spliced with a lead leading to the Triparagon.

After the sensor wires were all squared away, I then attempted to run 2 wires from each of the floor LED lights embedded in the sensor covers through the conduit on the face of the sumps . . .  the same Nylaflow conduits that I had just run the 3 sensor wires through.  I had tested this out earlier and there should have been plenty of room for 5 wires, but the wires just weren’t to be routed no matter how hard I tried or what method I used.

This was one of those tasks that every step you take to remedy the issue, the problem keeps getting bigger and wider, kind of like a big ‘ol pile of horse crap.  After messing around with the wires, my attempts to reroute them in my GIB headset jack conduit (I could spend 4 big paragraphs just on that cluster alone!) was to no avail.

So I punted.  It was late and I just didn’t want to screw anything up ( . . . further).  In short, out of the myriad of tasks I had planned to knock out today, I got about 3/4 of one complete!


15 August 2017 — Today I actually started off adding a couple of more shielded wires to my Dynon Intercom wiring harness connector (no pics).  With the 2 wires I knocked out today, that puts me at about halfway done on that harness.  In fact, I’ve got one more wire to add and then I’ll call it done until final install.  Why?  Well, the majority of the remaining intercom harness wires come in from the relay that controls the COM1/COM2 selection functions for the intercom.  And I can’t wire that up until I’m close to going live.

I then started back in getting the jacked up situation from yesterday straightened out.  I decided to bite the bullet and simply add another 3/16″ piece of Nylaflow –which will carry 3 wires–  from the left sensor cover over to the right and then a 1/4″ piece of Nylaflow –which will carry 6 wires– from the right sensor cover over to the right sidewall where the wires will merge into the small wire bundle that traverses the side of the fuselage.

I measured out what I needed and cut a piece of Nylaflow.  I then dry micro’d some around the Nylaflow to attach it and glassed in a ply of BID over each end.  I have to tell you, even this endeavor was just being a royal PITA! [I 5 min glued it the front wall but for some reason it just did NOT want to stay in place . . . ]

After much wailing and gnashing of teeth, I finally got the Nylaflow settled in close to what I wanted and after each end was cured, I then glassed a single patch of BID in the middle to finish off the 3/16″ Nylaflow conduit install.

I installed the left sensor cover in place using 5 min glue on 2 adjoining sides and silicone RTV on the other 4 (It’s hex shaped).  I then used my main battery to keep it in place while it cured.

A little while later, after the middle patch of BID cured, I then micro’d and glassed in the second piece of Nylaflow conduit, only this one was 1/4″ as I mentioned above.  I also used 1 ply of BID as I did before.

Even more of a while later I then 5 min glued & RTV’d the right sensor cover in place.  To be clear, I tested the LED lights in each sensor cover before securing them in place.

I will say that with this smaller Nylaflow conduit sitting right below the 3/8″ Nylaflow above it, the lip created by the top big Nylaflow conduit complete eclipses the lower conduit and you just can’t see it.


16 August 2017 — Today I got to work tying the respective left & right side GIB LED floor lighting wires together (white, red & ground pairs) into one lead.  I used solder splices to take the 2 right & left leads into a single wire lead.

I then covered the solder splices with protective heat shrink tubing and labeled all the GIB LED floor lighting wires.

I then tested both the white and red LED light pairs. They may look quite dim with the lights on, but with the lights shut off –as in a dark cabin– these things give off plenty of light.  And I should add: NOT blinding lighter either.


28 August 2017 — Today, still in the electronics mode, and not feeling up to snuff for shop work, I worked a couple more connections on my Dynon Intercom wiring harness. Specifically, I prepped and terminated the 22AWG 2-conductor shielded cable for the Mic connection from the intercom to COM1 (GNS-480).  Using the opposite end of the same 2-conductor cable, I also prepped & terminated the connection from the Intercom’s auxiliary audio input to the VX-Aviation AMX-2A 10-Channel Audio Mixer.  I also printed out & labeled these new Intercom wiring harness cables with heat shrink labels.


12 October 2017 — I started out today spending well over an hour doing some research, answering questions, and providing info to Bob Nuckolls, et al. in response to a question I asked on the Aeroelectric Connection forum.  The question I asked was on how to create or modify a 4-into-1 video splitter to channel the micro cameras I’ll have on ship for viewing the back seat left & right fuel site gages, top side looking aft (at engine/prop), and bottom side looking aft (at engine/prop).  This device will then feed a GRT-integrated USB video module that will allow me view the video feeds in a small sub-window on my EFIS either auto- cycling through (that was one of my questions how) or by manual select.


18 October 2017 — Today I started reviewing what I had left to finish my panel mockup.  With the 2 AG6 warning annunciators, I’ve ridded my panel of all extraneous warning lights save 2 (one red, one green) that specifically are allowed on my panel for the JBWilco Gear & Canopy warning system.  Interestingly, out of all the LED panel assemblies I have in stock, I did not have a green light.  I had the nice Cadillac of LED panel lights that my friend Eric at Perihelion Designs peddles, of which I have a Red & Amber version of, but I don’t have a green.  I went to Eric’s site, but alas I didn’t see them on there (I’m sure even if I missed it he would sell me one).  Interestingly I found Eric’s nice LED assembly on Stein’s site… ok, I had an identified source of supply for my green light!  Check.

So I marked up the panel using the sexy red LED panel light assembly I had on hand … Uh, Houston we have a problem, and it’s space…. not outer space, but space for the fancy robust flange included with Eric’s LED light assemblies.  They could easily fit, but at almost 0.45″ in diameter, they do take up some real estate!

In my quest for a green LED, I did run across Jack Wilhelmson’s Landing Brake switch plate that included a red and green LED… bingo!  Of course I had to rid the LEDs of their soldered component webbed matrix bondage stuff, but after I whittled them all down I ended up with a green and red LED light, albeit with short, solder-encrusted stubby leads. Knowing how these lights look in a panel, plus the diminutive plastic “grommets” used to hold them in the panel, I decided to go with these.  Plus, I really like repurposing stuff that might otherwise just end up in an old parts bin!

I checked Jack’s included landing brake wiring schematic (I’m too lazy to attempt deciphering the resistor color band codes) to determine that he did in fact use a 470 ohm resistor . . . perfect!  Thus, I reused that as well in my evil plan here.  I soldered Jack’s repurposed resistor to Jack’s repurposed green LED.  I then added the appropriate color-coded 22 AWG wire leads by soldering those into place as well.

I then soldered one of my benchstock 470 ohm resistors to the red LED, and also soldered on the appropriate color 22 AWG leads.



2 November 2017 — Today I grabbed my last little bit of 1/16″ thick G10 stock and got to work making a mount for the fuel vapor sensor.  I started off by making a cardboard template, then once I dialed that in, I transferred it to the G10.  In doing so I discovered that the mounting hole for the fuel vapor sensor is not 2-1/4″, nor 2″, but rather 2.034″ . . . some sanding required.

A quick discussion on the requirement for a fuel vapor sensor.  I got the idea of having a fuel vapor sensor, something that a lot of boaters have in their engine compartments, from some RV builders.  I had pulled it from the install line up, but with the GIB thigh support fuel sumps and a few fuel lines & connections in the cockpit, I decided since I had it on hand it was the prudent thing to do –at least initially– to install it.  I do realize that the grams start adding up into pounds, but this is really a lightweight, plastic housed instrument that it, combined with the wiring and aft-mounted sensor, weighs less than 4 oz.

I started by drilling a 2″ hole into the G10 plate.

After a few rounds of sanding I got the Fuel vapor sensor control head to slide into place.

Using my cardboard template I then finalized the shape of the mounting bracket.

I then used my trusty jig saw to cut out the fuel vapor sensor mounting bracket.

A quick test fit to confirm that the mount’s bottom profile was good.

And then, after sanding and cleaning the mounting site atop NB, I 5-min glued the fuel vapor bracket into place.

I then prepregged 2 plies of BID for the aft side, and 2 plies of BID sandwiching 1 ply of UNI for the front side.  I wet out the prepregged glass and laid it up on each side of the fuel vapor bracket.  I then peel plied the base of these layups.

Another look at the glassed fuel vapor sensor bracket.

After a good while, I checked the layups on the fuel vapor sensor bracket.  The glass was barely pliable — I had let it go just a tad too long– so the razor trimming was a bit more of a workout than if I had caught it about 30 minutes earlier. Still, I got it rough trimmed to the point I could get the fuel vapor sensor control head installed.

To be honest, it felt as if I had mounted the fuel vapor sensor out from centerline a bit more than where I had originally set it in place.

I grabbed another shot looking straight ahead and it still seemed to be peeking out from the center panel strut just a tad more than it had in my original mockup.  Hmmm?

I finally decided that I couldn’t go to sleep tonight if I didn’t know exactly what the clearance would be between the fuel vapor sensor and my right leg . . . so I assembled all the dismantled pilot seat area stuff to allow me to climb in and check it out.  I have to say that it really presented no obstruction or clearance issues at all.  It IS CLOSE, but to touch it I have to force my knee unnaturally inward.  I still would have mounted it about 1/8″ to 3/16″ further inboard if I had a redo, but that’s more of a mental thing than it is a physical clearance issue.  Thus, this thing is pretty much in plain sight during my visual scan, being that I installed it about as far off CL as possible without having any leg clearance issues.

I may still sand down the outboard edge of the mounting bracket a hair just to keep it more in line with the instrument face, to keep any errant scrapes from happening during warm-weather flying in shorts.

This pic might provide a better visual as to the clearance I have between my leg and the fuel vapor sensor.  I’ll repeat that I had ZERO clearance issues, and that to actually touch the sensor to the point I really felt it, required in inward press on my knee that was not at all comfortable position-wise, and not from the pressure of the instrument mount.


13 November 2017 — Today I got to work figuring out the size and configuration for the cigarette lighter charger bracket in the corner just forward of the lower instrument panel bulkhead and on the left side of very front edge of the nose gear cover (NB)…. all just to the left of the nose gear viewing window.

After getting a paper template made out of a 3×5 card, I then transferred the shape to a 1/16″ thick piece of G10.

I drilled the hole first, then cut the bracket out of the G10 stock.  I then test fitted my new bracket in place.  It looked good, so I 5-min glued it in place.  When the 5-min glue cured, I then micro-filleted the edge where it mated with NB, and glassed the top surface with 1 ply of BID.

The pic below right is after the layup had cured, and I pulled the peel ply, razor trimmed it and cleaned it up.

I then test-fitted the cigarette lighter charger into its new mounting bracket.

Below is another shot of the new cigarette lighter charger installed at the base of the instrument panel bulkhead.  Now, the underside sleeve of this charger is actually a bit too wide in diameter to fit comfortably under the bracket, so I’m going to have to kick the hole outboard about 0.1″ to get it all to install smoothly.

I wanted the cigarette lighter charger in this location so I could use it inflight, both with the bigger old style charging adapters, and also with a USB charger insert.  Another major factor for picking this spot is that I wanted easy access to this charger specifically, since it will be wired to the battery bus.  Then, when I want to charge the battery, I simply just take the cigarette lighter charging adapter that I have for my charger and plug it in…. EZ PZ!


14 November 2017 — Today, since I had the sheet of 0.040″ thick 2024 aluminum out, I went ahead and cut the 3.3″ x 3.5″ plate for the 2 “Mag” switches (we’ll say, although both are electronic ignition) and the master switch.  As you can see by the pic, these switches will get mounted just forward of the control stick on the right armrest.


Back to Top

Recent Posts

Project Update

Hi Folks,

Yep, the internal CF baffles and aluminum baffle walls are installed, and I’m now working to finish up the perimeter baffle seals… in the shortest order possible.

I had noted previously that all the exhaust pipes have been welded, but after assessing the inside-cowling positioning I need to angle both left side pipes further inboard… this will require recutting and rewelding the outboard left exhaust pipe.  Once the outboard left exhaust pipe is situated, I’ll get to trimming all the exhaust pipes to final length. 

After a few months off due to cold weather, some house projects and getting engaged, I’m still intent to focus solely on the plane for the next however long it takes to finish this bird… ASAP!  

  1. Chapter 23 – Right baffle seals installed Leave a reply
  2. Chapter 23 – Right exhaust pipe tab Leave a reply
  3. Chapter 23 – Left baffle seals installed Leave a reply
  4. Chapter 23 – Left aft baffle seals Leave a reply
  5. Chapter 23 – Left exhaust pipe tab Leave a reply
  6. Chapter 23 – Left pipe redo… Leave a reply
  7. Chapter 23 – Dialing in baffle seals, etc. Leave a reply
  8. Chapter 23 – Top side baffle seals Leave a reply
  9. Chapter 23 – Front baffle top seals Leave a reply