Chapter 11 – Coming to an end!

I mentioned that I had updated my electrical component placement plan for the nose.  I finished the final mods this morning and figured I would post it for you all to see.

Updated Nose Electrical Gear

I installed the 5/16″ bolts that I bought last night at Home Depot into the forward & aft fuselage cradles.

Fuselage tie-down strap

Here’s a shot of the front fuselage cradle bolted in place.

Saddle mount bolts

After using the Dremel tool on the elevator TE to clean off the foam & micro to ensure a good glass-to-glass bond, I applied foil tape to the bottom of the elevator and instead of Bondo I used 5-min glue to secure the elevator to the table.

5-min glue application on foil tape

I weighed down the elevator as the 5-minute glue cured.

Elevator 5-min glued to workbench

I re-vacuumed the top of the elevator after removing the sandbags and then whipped up some micro and applied it.

Elevator ready for glass

Elevator micro'd

Here’s a shot after I completed the 2-ply UNI layup.

Top of left elevator glassed

A close up shot to show how dry the layup is … can you tell?

Pretty dry layup!

After a couple of hours I applied dry micro to the TE and then covered the micro with a 1″ wide strip of peel ply.

Razor trimmed & TE micro'd

Tomorrow I plan on getting the outboard end glassed and also the outboard weight reattached.  After that, I’ll just need to clean out the hinge slots and holes and the left elevator will be complete!

 

 

Chapter 22 – More electrons

Today was another bust on getting some shop work in.  Between business calls, meetings and knocking out some personal errands, I just couldn’t get some shop time in.  One thing I could do while I was on the phone was make labels for my electrical components.  So I did.

As many of you may know I designed my electrical system so that I have each component identified with a 2-digit code, and then a 3-digit identifier for the pin, wire  or connector.  Combine this with a 1-letter designator prefix that identifies one of 12 distinct areas of the aircraft, and I then have a resulting 6 digit code that tells me exactly where any wire is coming from or going to, and the device at each end.

So as I was on the phone I simply pulled out the label maker and started going through the list of codes.

Electrical component labels

When I got a chance I would cut a few out and label the components that I have close by.  Since I was in a groove at the end of the work day, I simply rolled into digging into my stores of electrical stuff and labeling a large number of them.  I would say I have about 70% of my electrical components on hand labeled.

Since I was deconflicting and updating my electrical component ID list, this segued into my figuring out more finitely each component installation location in the airplane. I pulled out the Electrical Book of All Knowledge, The AeroElectric Connection by Bob Nuckolls, and reviewed it to make sure I was not straying off the straight & narrow path of good electrical practices.  Especially considering that plastic airplanes amplify a lot of commonplace negative issues that crop up in wiring any airplane.

I also reviewed a lot of other builders’ electrical systems, analyzed those, and emulated a lot of good install how-to’s.  I also jotted down some crude diagrams to look at wiring runs, device locations, etc.  This involved digging out a lot install manuals and verifying a fair bit of information.

By working through what I did last night, I really feel that I confirmed and elevated the completion level of my electrical system design from about 75% to about 90%, and with just a few more minor pieces of information, and perhaps a few phone calls, I’ll be really close to locking in the final locations of nearly all my electrical components.

 

 

Chapter 22 – It’s Electric . . .

Today I didn’t get any shop work completed.  I had planned on organizing & cleaning the shop a bit, and then getting the fuselage mounted on the dolly, but ended up working on the electrical system for about a total of 6 hours.

Although I didn’t add it to my log entry, I had actually spent a couple of hours Saturday diagraming out the circuit for my canopy & gear warning module.  I thought I was looking for a DPDT microswitch to match the one Jack had mounted on one side of the gear actuator housing for the down limiter.  The other side only has a single switch.  I even sent Jack an email asking for the part number, since all the info for the microswitches were hidden from me on account of how they were mounted with the nomenclature, etc. facing the mounting flange.  I didn’t want to move these suckers unless absolutely necessary since they’re “factory” set initially for the correct up & down limits.

Well, right before I left the house for the evening I took a much closer look to see what type of roller the microswitch had and the length of the lever arm.  Upon closer inspection I realize it had two rollers??  Wait a minute!  This wasn’t one switch!  It was two switches stacked one over the other!  Doh!  I remembered I had a microswitch included in my accessories for the speed brake, which I also bought from Jack.  I pulled that switch out, saw that it was the same switch as those mounted on the nose gear actuator, and so was able to get the manufacturer and part number off of that one. I then quickly sent Jack an email saying that I apparently need glasses and to disregard previous transmission!  All of this hassle for a $3 switch!  BTW, the switch is an Omron SS-10GL2T.

With the switch issue settled yesterday, and with the added wiring the new switch circuit will add, I was armed with the info I needed to order a new 14-pin AMP CPC connector from Mouser.  I assembled my order which included a whole lot more pins & sockets, a pin/socket removal tool and of course the Omron microswitches.

I then turned my sights on a developing order that I had with Aircraft Spruce.  I’ve been assembling this order over the past couple of weeks and wanted to get to a point where I felt I wasn’t missing anything important, like the quart of fast MGS hardener and 1″ peel ply tape that I added just prior to hitting the “submit order” button.  The order includes a lot of odd n’ end fasteners & hardware for mounting electrical components, etc. in the nose.  Of course, as luck would have it (as it always does!), a few hours after submitting the order I ran across EZ Point studs on Joe Carragio’s website while doing some research.  They’re a bit pricey, but I know of a few places where I definitely want to incorporate these. Thanks Joe, I’ll add them to the list!

I then spent a few hours on virtually organizing the components of my electrical system. Yes, in true neanderthal fashion I pulled them all out, traced their profile on a sheet of graph paper, and then identified which bus they were wired to, and looked at the length & destinations of the wire runs.  Again, since so much of this business occurs in the nose, and that’s what I’ll be building next, I don’t mind taking a few hours to get better educated on just what the nose will house before I start building it.

I made a number of annotations and tweaked/swapped/modified a number of other circuit connections simple based on location of component and the ease/requirement of access. The bottom line is that I want the guts of my electrical system to be as optimized, organized, clean, and lightweight as possible.  I don’t want a rats nest of wires that looks like the cable monster puked in the nose of my airplane and then merely shut the lid to hide the hideousness of it all!

In addition to the aesthetics of the system, I want my electrical wiring to be practical in that the configuration of it all minimizes head-scratching during future troubleshooting or component additions, and even more importantly that the RF noise is mitigated to the maximum extent possible.

After creating a ton more notes, and figuring out some important electrical system design info and component placement, my final official act of the evening was deciding that a 14-gang fuse holder would be the right size for my E-Bus.  Thus, I pulled the trigger on that as well and ordered one.

So although I have no sexy build pictures to post, I did get a ton of stuff sorted through and a lot accomplished.  And I got three separate orders in on various in-depth, technical stuff I need for this build.  Not a bad day for the build I would say.

 

 

Chapters 13 & 22 – More Electrical Stuff

Today –while the canard epoxy cures– was about research and getting reacquainted with my electrical system.  My specific interest was in figuring out what components, electrical & otherwise, that I was going to put into the nose.

Now I know a lot of my contemporary building buddies would whip up some awesome looking CAD diagram with exact dimensions down to 3 decimal places that looks like an engineer’s dream, but me being a former military “Powerpoint Ranger” and certified neanderthal, I simply added a slide depicting my thoughts on this matter onto the end of my ongoing notes for the nose build.

Again, this stuff is really just a mental thought jogger on what will most likely go into what areas in the nose, and get me thinking if there is any pre-actions or prep I can do as I build the nose.  Some of the components I ID’d will be in the nose area, but aft of F22: OAT probe, static ports, buss fuse housings, etc.  In addition, on many of the components I had to look up in my notes, emails, websites, install manuals, etc. to either confirm or research further why and how they were getting installed where.

Nose components

Now, I mentioned CAD earlier, so speaking of CAD:  The CAD program I was using to create my electrical diagrams was NanoCAD, as recommended by Bob Nuckolls in the AeroElectric Connection online forum.  This was a great CAD program for electrical diagrams primarily because A) it was what Bob used to create all of them, and B) it was FREE!  Unfortunately, my version of NanoCAD is no longer supported and apparently NanoCAD is now on Version 7, which costs a decent amount of money now to buy.

Well, no worries since I have TurboCAD, which I happened to purchase while I was in Tampa, Florida.  But I didn’t have it loaded up on my desktop so I ended up spending a good half hour loading up TurboCAD and familiarizing myself with its features before I could open up any of my electrical diagrams.  Why? Well, in a series of typical events, I had taken all the hardcopy printouts of my electrical diagrams down to my buddy Marco’s house while I was on leave from Qatar in March 2014, forgot them there, and haven’t been back to retrieve them yet . . . mainly because every time I go to visit him he puts me to work building HIS Long-EZ!  HA!  (Click here for the real story . . . )

Thus, to be able to make my annotations on my electrical diagrams on an actual sheet of paper, I had to be able to open the darn files to print them, which I am happy to report that I am now able to do.

In line with my reviewing my nose electrical components, my main preparation is in getting the nose gear actuator wiring sorted out to test it.  I had planned on going over all my electrical stuff today since the epoxy was still curing on the canard and also, in part, because my AMP CPC connector order from Mouser was scheduled to be delivered today, which it was.

I checked out all the goodies from Mouser and pretty much solidified my plan for the wiring & connections for the nose gear actuator system.

AMP CPC electrical connectors

Tomorrow I plan on a good final sanding of the canard top surface before I apply a couple of coats of primer on it.  In addition, I’ll most likely cut the UNI for the elevators and start planning out a refined elevator build schedule.  Who knows, I may even get the nose gear actuator wired up & tested out.

 

Chapter 21 – Strake Leading Edge Kit

After getting settled back in from being at Rough River this past weekend, I set about to do a proper inventory of all the strake ribs and fuel tank baffles from the Feather Light Strake Leading Edge Kit that I bought off Nate Mullins back in late 2013 and finally just picked up.

Here’s a shot of them below back AT MY HOUSE! The pieces all have a shiny covering on them which is just an extra layer over the peel ply.  All the parts will need a final trim before final installation, but having these parts pre-glassed and pre-cut should save me days on the strake build.

Feather Light Strake Kit

I cleaned up the inside glass of the leading edge pieces, and then set up for a pic before they were  stored away once again.

Feather Light Strake Leading Edges

 

 

Chapter 25 – Finishing

Just a quick post to show that over the past few months I’ve been stockpiling various stuff I’ll need for finishing the canard & other parts of this bird.  I know a fair number of builders don’t care for using West for the final finishing, but I don’t have any issue with it & so when it goes on sale I’ll pick up a gallon of it to add to the inventory.

Finishing Stuff

And as you can see by the pics, my initial plan is to use boat paint for the primary finish.  In addition, as per Wayne Hicks’ recommendation I picked up some 3M Hookit Long Boards & sandpaper for the wings and other large areas.

Finishing Stuff

If all goes according to plan, I’ll be putting this stuff to good use when I finish the canard.

 

Chapter 16 – Dissecting the throttle handle

My original thought when I acquired my new F-15 throttle handle was to simply test all the individual pins & create a wire map of all the switch circuits.  Well, with a 37-pin cannon plug, that was a little easier in thought than in practice.  After hunting & pecking for a while, I decided that it was time to dissect the throttle handle and see what exactly I was dealing with . . . and I’m glad I did.

I had already made up a pin-out diagram for the cannon plug & numbered each pin.  Since I wasn’t able to figure out the circuits for the switches or visually see them, I clearly wouldn’t know their functioning until I cracked this thing open.

F-15 throttle handle disection

The first thing I saw when I opened the throttle handle up was the flat joystick-style switch that sits on the outboard, front side of the throttle handle.  It took me a while to carefully dig out the potting material & get the wires situated to the point that I could finagle this thing out of there.  It was a very tight fit!

F-15 throttle handle disection

F-15 throttle handle disection

I then began digging out the other top switch from its potting goop.  I identified the wires & listed them by color on another sheet of paper.  I set about confirming their connections by performing a continuity check by placing one side of my test lead on a switch terminal, then at the cannon plug side I would simply swirl the test lead around until the voltmeter rang out.  Then I would annotate it on my diagram.

Dissecting F-15 throttle handle

After I finished the top switch & had all its info documented, I would then spend another 20 minutes or so excavating the next switch from its potting material prison.  Once its leads were exposed, I again performed a continuity check to figure out the cannon plug pins.

Dissecting F-15 throttle handle

After determining the wiring schema for all the switches on the throttle handle, I discovered some key pieces of information:

a.  I am going to completely rewire the switches in this throttle handle.  Clearly these switches are configured for specific discreet electrical components on the F-15, as evident by the myriad of capacitors, resistors, etc. hanging all over each switch.  Plus, there is far more extra capacity with a 37-pin cannon plug than I am going to need to drive my components with the switches on hand.  My initial thought is that even a 23-pin plug will give me plenty of future scalability.

b.  I’ll be removing the pistol-shaped switch that engulfs the entire interior left side of the throttle handle.  It may provide more capability when linked to specific F-15 systems, but in my case it only offers me a single-position momentary on.  It takes up a lot of real estate and it’s heavy, accounting for almost 20% of the current weight of this handle.  If I get rid of this switch by replacing it with a nearly externally identical Otto switch (with much smaller internal guts), reduce my throttle handle wiring harness by nearly half the wires, and use a smaller plastic AMP connector, I think I could reduce the weight of this handle by about half (about 0.65 lbs).

For those of you that are curious about the current throttle handle switch functions, they are listed below this pic in order starting at the top right-hand switch (flat grey) moving CCW.

F-15 Throttle Handle

1.  Grey flat joystick style: single momentary on (TBD).
2.  Black push button: PTT – single momentary on.
3.  Black push button: single momentary on (GTN650 remote or Trio AP fuel data)
4.  Metal china-hat toggle: ON-OFF-ON (possibly air brake)
5.  Black push button: DPDT dual momentary on (TBD).
6.  Grey-capped toggle:  3-position (broken lead/functioning TBD… ON-OFF-ON?)
_________________________________________________________________________

Also, as I mentioned in my last post, for those of you that are curious about the size & fit of the F-16 throttle handle, I shot a couple pics to show what I was talking about.

F-16 Throttle Handle Comparison

Not terrible at all, but definitely takes up more space than I’d like it to inside the Long-EZ cockpit.

F-16 Throttle Handle Comparison

 

 

Chapter 16 – New Throttle Handle

The other night I was on the computer when my Spidey sense started tingling, and I started poking around eBay for throttle handles & quadrants.  For some reason I was off on a mental tangent concerning my throttle handle since, if you recall, in early 2013 in response from a discussion with my buddy Marco, I found a source for some F-16 throttle handles for us.  We both like the thought of HOTAS (Hands On Throttle And Stick), and an F-16 throttle handle, besides being cool, obviously offered a way of putting switches on the throttle.

Fast forward a couple of years, with both F-16 throttle & fuselage in hand, I started realizing that the Long-EZ cockpit is just not that big.  Obviously, the F-16 doesn’t have a lot of real estate either, but the Long-EZ specifically has a narrow left-side console & there’s just not a lot of room for a larger throttle handle taking up a lot space in that area.   In addition, the F-16 throttle handle sticks out over the pilot’s leg, which I could see getting in the way during ingress & egress to the bird.

Now, back to my foray on eBay.  I was actually looking for an F-100 style throttle handle, and found a couple when I searched for “throttle quadrants.”  If you haven’t seen an F-100 throttle handle, it’s rather cylindrical with just 3 buttons on the top.  I was actually thinking of incorporating that style into a new design, and maybe work with Marco to build a unique one out of some lightweight 2024 aluminum.  But right before I logged off eBay, I searched for “throttle handle” and found a military surplus F-15 throttle handle for sale.  It was $69 and seemed to be in pretty good shape (pics below).  I did some quick research & felt it was a good deal, so I pulled the trigger.

F-15 Throttle HandleF-15 Throttle HandleF-15 Throttle HandleF-15 Throttle Handle

Once I received it a couple of days later, I pulled it out of the box and quickly checked the size & fit in the cockpit.  The first thing that struck me was the great fit of the throttle handle in the Long-EZ’s fuselage since the throttle handle’s outboard side is completely flat vertically.  This is of course because technically this is just half, or one of, the F-15’s throttle handle assembly.

Since the F-15 has two engines, this is actually the right-hand engine’s throttle handle and is located next to the left engine’s throttle handle in the F-15.  If I remember correctly (I supported F-15’s years ago at Langley AFB), they are typically physically paired so they move in unison, thus their mating edges are completely flat . . . which again works perfectly in a Long-EZ!

F-15 Throttle Handle

Curiosity got the best of me so I pulled out the existing throttle quadrant and laid the new F-15 throttle handle next to it.  As you can see from the pic below, the new handle is only slightly wider the existing black plastic tube handle only because of the switches mounted on the side of the F-15 throttle handle.

BTW, the cost of those aviation grade switches alone was a big factor in my thoughts on this being a great deal.  Unfortunately, as you can also see in the pics, I’ll have to spend some time on cleaning up the surface of the new handle too if I want to improve its curb appeal (which I will).

F-15 Throttle Handle

Now, every once in a while when I’m off on one my quests to incorporate some unique “unauthorized” modification to my Long-EZ, and am way, way off the path of approved build actions, I actually get a break.  Not just a break, a BIG break that makes something really EZ to incorporate into the design.  Thus, was the case with this throttle handle.

Remember, I had originally just opened the box to ensure that what I had purchased was correct and undamaged.  But after checking the size & fit in the cockpit (GOOD!) and the initial size & fit on the throttle quadrant (GOOD!), I noticed the throttle handle had 3 threaded attach points on the outboard (flat) side of the handle.  These 3 points all were threaded for AN3 (3/16″) bolts, which is exactly what was used to hold the black tubular handle on the the throttle quadrant that I have (AWESOME!)

I quickly took off the existing tubular throttle handle and within mere minutes had the new F-15 throttle handle MOUNTED to the throttle quadrant.  Clearly I’ll have to drill a second hole to finalize the installation, but that will be all that’s required to physically mount this throttle handle.  Of course I will have to contend with routing the wiring as well, but I don’t see that as terribly difficult.

F-15 throttle handle attach

One important note on fit: you’ll notice that with the attach point of the throttle quadrant lever being located close the center of the new throttle handle, the overall space used to employ this throttle handle in the cockpit is quite negligible.  It literally just adds a hair more aft of the original handle, a little over an inch to the front, and the vast difference in height between old & new is minimized by mounting the new handle “low.”  Thus, there’s really only a true height increase of the throttle quadrant by about 1.5″.

In fact, I keep a small whiteboard on the door of my shop for taking notes, listing glass cut schedules, etc. and I use it constantly throughout my build sessions.  I don’t usually show my chicken scratchings on this blog, but here are the size differences I noted between the two throttle handles:

Old/new throttle handle dimensions

With my NEW throttle QUADRANT assembly in hand, I then checked to see how it looked & fit in the cockpit.  In my opinion, it fits like a glove & is exactly what I was looking for… I couldn’t be happier!

F-15 Throttle Handle

Here’s a side view of the freshly mounted throttle handle.

F-15 Throttle Handle/Quadrant

And a view from front looking aft:

F-15 Throttle Handle/Quadrant

I snapped a few shot to show the size comparison between the old throttle handle & the new one (note the old handle resting on the new one).

F-15 Throttle Handle/Quadrant

And an aft view.

Throttle handle size comparisonsAs you can see, the new F-15 throttle handle fits much better than my existing F-16 throttle handle (I guess I actually didn’t show the F-16 handle, so I’ll try to get a pic of that in a future blog post). It’s a little ironic, because as I mentioned before I actually worked on & supported F-15s while in the Air Force, and although I was trained on F-16s, I was never stationed where I was in direct support of them.

Another point in this handle blowing the F-16 handle out of the contest, is clearly this handle comes with switches mounted!  That makes the task of identifying and employing switches for the landing brake, PTT, COM flip-flop, etc. much easier.  Over the next week, I’ll be identifying the wiring schema for the throttle handle, and figuring out how the handle-mounted switches will be incorporated into the overall electrical system plan.

A quick clerical note, I’ll be posting this both in the Chapter 16 (Controls) & Chapter 23 (Engine) build log sections of this site (the original F-16 throttle handle posts were listed only in the engine chapter).

 

Prep, Restock & a little R&D

It’s quite the rainy day in the Nation’s Capitol today.  I took some time this morning to do some research on my sandblaster woes.  I found out some great info, and as often is the case with Harbor Freight equipment there is a hidden set of gotchas that comes with it . . . awesome, cheap prices, but many times at the expense of having to incorporate some type of workaround.

Thus it is with my sandblaster.  Even though I have an air dryer for my compressor, it is old and probably performing far below what it should be.  At some point I’ll get a new desiccant filter for my air dryer, but to get moving quickly on this project, I simply bought an inline desiccant air dryer, along with an inline filter, while I was out buying a myriad of things for the next phase of this build.  I’ll need to track down a few more things like higher end ball valves if I want this sandblaster to perform for a good period of time.  I did hold off on buying any more blasting media until I conform my upgrades work.  One last thing on the sandblaster: I learned that there is a definite trick in the order to which the 4 ball valves get opened, and exactly how far to open each of them to keep the media flowing, and not jamming up in the hose.

I also did some research on paint for the rollover assembly (and possibly the instrument panel).  I want a very nice quality, professional-looking roll bar, but I’m not looking to shoot it with a two-stage polyurethane or anything like that.  Also, because I’m using bondo to clean up the seams I can’t powder coat it, which I wasn’t really looking to do anyway.  I like the idea of having a paint job that looks great, but that I can change the color somewhat easily if I want, and that can easily be reapplied if I need to modify or add something later (like the tab for the pneumatic canopy stay).

Thus, over the last few days I’ve gone into backyard mechanic mode and have been researching rattle can clear coating for the roll bar (Yes, I can here all the groans, gasps & sighs now! HA!).  Again, something that will make it look great, but is also somewhat EZ to maintain.

Now, my thought for the aft roll bar support tubes is that they will serve 2 primary purposes:  1) (rare) buttress the roll bar if the roll bar (God forbid) ever gets called into real action, and 2) (common) used by the GIB as hand grips for ingress/egress of the bird.

With the hand grip piece of the puzzle in mind, I was thrilled when I not only ran across Rustoleum’s FLEXiDip, but that it had it’s own version of clear coat that could shine it up with the rest of the roll bar.  FLEXiDip provides whatever it’s applied to a rubbery surface for gripping.  Sounds perfect for the roll bar support tubes in my mind!

To test it out, I grabbed an old rusted pipe that I use as a cheater bar.

Test pipe

I then hit it with the wire wheel to clean it up for my test shoot.

Prepping pipe for test

And I then shot a number of thin coats on it (as per directions).

Shooting FLEXiDip

Here’s the FLEXiDip when it’s dried (no clearcoat . . . yet!)

Dried FLEXiDip

And another shot with a bit more contrast to see it better.

BTW, the texture is not a thick rubbery feel, but it’s definitely “softer” than regular paint. Pretty cool.  I also picked up another brand, Plasti Dip, that I’ll be trying out in a head-to-head runoff for the best rubberized coating.

Contrasting the FLEXiDip

In addition, I bought some 12 ft long 2×6’s to use for the canard work bench that I’ll be building within the next few days.

Wood for canard workbench

Finally, as you may get a slight glimpse from the picture above, I spent over 2 hours last night doing nothing but cleaning & organizing the shop and putting all my tools back where they belong.  With that, the start of the finishing of Chapters 10 & 11 looms ever closer!

 

Chap 8 – Seat back

Today I awoke to what was supposed to be a nasty day, but turned out to be a beautiful day for flying.  I was getting together with my lifelong friend Kevin, who stayed with me a bunch in Germany and helped me glass the left wing.  Kevin just got back into town permanently after having done the multi-year contractor gig over in Pakistan since about the time I was returning to Germany from Tampa in April 2013.  Long story short, I took him flying on a hop over the Chesapeake Bay to Cambridge, Maryland where we did a few touch-n-goes and a couple of landings before heading back.   Amazing how a forecasted crappy day turned out to be almost as perfect as you could ask for to fly.

Back in the shop, I went into planning mode.  With just a couple small odd-n-end things to do on the headrest, I turned my sights to the seat back configuration.  As I said in my video, the seat back will be close to the original plans in that there will be about a 4″ wide glass shelf, or headrest base, that meets the seat back at the aft side, will traverse across the fuselage from longeron to longeron, with the forward edge abutting the rectangular 4130 steel crossbar that will make up the primary base of the roll bar.  The rectangular crossbar is 1.75″ wide, so add that to the 4″ glass base that sits directly aft of it, and we get an overall flat surface area going across the back of the seat of 5.8″ wide.

Coincidentally (or not), the headrest assembly is 5.8″ deep at the base.  I don’t have any pictures of all this yet, but you can see that the aft 2/3 of the headrest will sit on the 4″ glass base, with the forward 1/3 of the headrest sitting on the rectangular crossbar.  Two (2) screws will secure the headrest to the glass base, and two (2) screws will secure the headrest to the rectangular crossbar, for a total of 4 screws securing the headrest to the base structure of the seat back.

So tonight was all about figuring out the composite structure for the seat back area.  If you take Burt’s original headrest configuration, and lopped off the triangular headrest so that you were just left with the base of it, you would essentially have what I am designing right now.  One other key modification that you would have to do to the original plan’s seat back, is to make a notch 1″ down and 1.75″ deep/wide at the front corner of the plan’s headrest base to allow for my rectangular metal crossbar to fit in there.

I accounted for every piece I was going to need, while assessing the pieces I had already made during the Summer of 2012 in Germany.  I will also need to widen one of my 3/8″ foam pieces that I have glassed on one side, and cut out some foam pieces that will be wide enough to go across the fuselage.  I pulled some 3/4″ & 3/8″ sheets of Divinycell out of storage in preparation for the seat back construction and confirmed I had all the materials required on hand.

Obviously once I get the headrest base/seat back glassed I can start actually welding the 4130 steel rollover assembly together.

My goal is to have Chapter 8 completed by the end of March.