Chapter 13 – Nose Cone

Happy New Years Eve everyone!

I didn’t get a lot accomplished today since it’s New Years Eve.  I did spend a good hour+ getting an order in with McMaster-Carr & another with SteinAir.  I have another teed up for Aircraft Spruce that I’ll be pulling the trigger on in the next day or so.  Being a former military bubba and a project manager, I try to work my logistics first thing in the day to keep the pieces parts flowing in so they’re on hand when I need them and I don’t hit any work stoppages.

Just about every time I venture upstairs I quickly hit the computer to update lists, spreadsheets, diagrams, and online order pages that I have perpetually in the making to ensure my info is as updated as possible.   Inventory control especially is a time buster, but a critical part of build project… again, especially a plans build project heavy with a lot of disparate off the shelf & homegrown modifications.

But back to the build . . .

I started off today by hitting the edge of last night’s interior nose cone layup with the Fein saw.  I also took my round screwdriver-shaped Perma-Grit tool and knocked down all the glass “gotchas” on the edge of the overlapping glass edges since I didn’t –WAIT FOR IT!– peel ply this layup.  I know right?!  Always a first for something . . . ha!  Actually, there is something very textually and visually appealing about un-peel plied glass.

Cured inner nose cone layup

With the amount of flox I put around the front face of the pitot tube (in relation to the pic above, but actually the bottom edge as it sits on the airplane) and around the base of the G10 sleeve nub as it looks in the pic, there was a noticeable bit of heft to the nose cone.  This added bit of weight isn’t a concern since as I stated before this BID strengthens the nose cone structure.  Plus, if we ponder on the Davenport nose being developed in the mid-1980’s, and the battery technology going into the nose at the time, it’s EZ to see that our new glass mat batteries are half the weight as what was originally calculated for this nose design.  Adding another half pound in weight in flox & glass when it offers increased strength to a gutted nose cone is really more than acceptable, it’s most likely required (this is my intuitive layman’s gut philosophizing here, since I’m not an engineer).

I say this because I modified the Davenport nose, which is turn of course a modification of the original plan’s nose.  The Davenport nose plans has the battery mounted forward (or at least the capability) of where my battery is “hard” mounted in a very specific place.  I modified the BC1s to keep my battery in a certain spot to allow clearance for the pitot tube in its retracted position.  Thus, in line with what I stated above, a little extra weight a few inches forward of where the battery would have most likely been mounted (again, an inch or two forward of where my battery is currently mounted) is something that I can’t help but think would be a positive factor on the CG.  Of course, this will all flush itself out during the W&B.

I then had a stylistic decision to make.  In wanting to get as many tasks & as much prep work out of the way as possible, I wanted to finish the interior area that will be somewhat visible around the landing light mounted in the nose.  What should I use for a background color that will be visible when viewing the landing light through the lens cover?  In my mind my choices where:

  • Flat Black
  • White
  • Shiny metallic (Aluminum foil tape)

I liked the idea of the shiny tape.  I did a quick test (not shown) by cutting out 3 pieces of cardboard about the length of the “light bay” in the nose cone.   I then covered these with aluminum foil, taped them together to make a 3-sided “U” channel, turned off the shop lights with the landing light on, and then put the new aluminum foil channel around the landing light.  The SunRay Plus landing light’s beam is so focused that there was absolutely ZERO affect of the channel around it.

With that knowledge in hand, and after spending a good half hour Googling pics of canards and other aircraft landing lights, I decided I liked the flat black best.  Two other factors that played into the decision is that the foil tape is just that, tape.  I didn’t want to concern myself with having tape peel off or curl, no matter how great foil tape tends to stick.  And even though I have foil tape on hand, I also have a can of flat black spray paint on hand too.  Decision made!

I taped up the nose cone to prevent any unwanted overspray.

Prepping to paint nose cone innards

And then sprayed a couple of coats of flat black paint onto the sides and “ceiling” of the area that will show through the lens cover for the nose mounted landing light (aka “landing light bay”).  In addition, before I remount the nose cone I’ll hit the vertical bulkhead wall immediately behind the landing light with a couple coats of this black paint as well.

Nose cone innards painted

Here’s a shot of the painted nose cone “landing light bay” after the paint dried.

The only way to polish lexan is chemically or with a high speed buffer. This is not cool. I've decided that the nose will be one of the first things to take on scratches so Lexan can't be used. I've switched to Acrylic and will be making a new piece.

You may have noted in the pics of the nose cone that some of the foam at the bottom aft end is chipped away where I had to thin out the foam to allow for the nose cone to be remounted with the landing light in place.  In actuality, it doesn’t fit.  Due to the 11-14° down angle of the landing light required for landing in a Long-EZ, the front bottom corner of the light protrudes beyond the bottom profile line of the nose by about 0.2″.

Since I haven’t skinned the outside of the nose, I could easily account for this and simply modify the bottom nose structure to allow for this minor protrusion, but I don’t want to… mainly because of the drag implications, but also because the visual ones as well.  I will do this if I have to as a measure of last resort if that what it takes to keep the landing light in this location, since it’s the best viable spot that I’ve come up with for my build.  But clearly I’m going to do everything I can feasibly do to get this light mounted farther aft.

Here’s a diagram I made of the problem:

Landing light mounting issue

Here’s a couple shots of the landing light after I put spacers on between the aft side of the F-7.75 bulkhead and the landing light mount to move the mount, and thus the light, farther aft.  If I could move the light up, which I can’t due to the pitot tube G10 sleeve, than this would resolve this issue as well.  But my only option is to move the light assembly aft, which means the bottom aft corner of the light will have to occupy space that currently is the front face of the F-7.75 bulkhead.

Moving landing light aft

I took my Dremel and grinded a channel that is perhaps about 0.1″ deep where the bottom aft corner of the light would contact the bulkhead.  It still needs to go a bit farther back so I’ll continue to mess around with it until I get it dialed in.  I also sanded off the 4 remnant blobs of 5-min glue & blue foam off the front face F-7.75.

Moving landing light aft

Here’s a shot of the back side of the F-7.75 bulkhead in the batter compartment with the 1/4″ aluminum spacers I inserted along with a couple thick washers to move the landing light aft.  So far it’s made a noticeable difference, but it needs to go significantly farther aft (I’m thinking 0.4″) for the issue to be resolved.  This may mandate modifying the landing light mounting bracket, or constructing a new mount altogether.

Moving landing light aft

I plan on resolving the landing light mounting issue tomorrow so that I can get the nose cone remounted and move on to finishing the nose construction, which of course includes glassing the exterior nose skin.

 

 

Chapter 13 – Pitot tube install

I started off today by shooting my laser down the CL to ensure that the large bolt that I’m using as a clamp to hold my nose tip cone on is aligned in the center, since the hole I drilled in the big block of blue foam that is now my nose cone, was about a 1/4″ wider in diameter than the bolt.  I had to move the bolt over to the bird’s right (pic left) about 0.15″ to get it centered.  With that done, I could then sand the blue foam nose cone down to the big outer washer I used along with the gigantic bolt.

Aligning nose tip bolt

I then gave myself exactly 1.5 hours to sand the nose to shape, for round 2.  Here’s what I came up with on the left side.

Some fresh contouring

And here’s the right side.

Right side nose shaping

And here’s what was removed in sanding & shaping: Round 2.

Today's nose sanding mess

I then ran the requisite “tape measure-over-nose” to get an idea of how my nose was looking profile wise.  I think since I capped my nose cone at a hair over 6″ long, then my nose drops off more quickly than a gradual curve would show if I had added another 2″ to it like my buddy Marco.  But if I did that, I would hear his incessant claim that I was copying his design, so I had to sacrifice style for pride . . . haha!  (I’m kidding!)

You can see what I’m talking about by the approximate inch gap between the tape and the very tip of the nose.

Checking top profile

I think the sharp drop-off curve at the very top of the nose tip is a little reminiscent of the original plans-style EZ nose.  Either way, besides adding more to the front of the nose, there’s nothing I can do about it, so it will get worked into the schema.

Checking top profile

I then mocked up the pitot tube for install.  In its initial resting state in the nose cone channel (where my clamping bolt transited) it sat pointed about 0.1″ off to the left & about 0.1″ high.  I lightly sanded the inside of the nose cone channel a few trial & error times before finally dialing in the correct windage & elevation.

Below you can see my laser sighting of the pitot tube to match it with the aircraft’s CL.

Pitot tube test fit & alignment

When my incredibly talented buddy Marco machined this magnificent pitot tube, the G10 protective heat sleeve ended up in 2 parts.  To flox this thing in the nose, I didn’t want any flox leaking in-between the two pieces and locking my pitot tube into an eternal position, so I prepped the two G10 tubes to be joined via 5-min epoxy.

Joining pitot tube G10 sleeves together

Here’s my now one solid G10 tube for the pitot tube.

Pitot tube sleeve joined with 5-min glue

Well, the G10 pieces were a very scant fraction of a millimeter off, but when I ran the pitot tube down to test alignment, it literally snapped the single G10 tube back into 2 separate pieces.

Oh well, on to plan B.  I still couldn’t allow for epoxy or flox to get into that G10 seam, so I taped just forward of it and planned on the first round of flox to secure the first 4-5″ of the G10, then I would deal with the rest after I popped the nose cone off, whittled out the foam and laid up a ply or two of glass.

Pitot tube & sleeve prepped for install

As final prep before I floxed this sucker in place, I taped up the pitot tube with blue painter’s tape.  I wouldn’t want to have a beautiful pitot tube set perfectly in place with globs of epoxy from my ham-fisted install all over it!

Pitot tube & sleeve really prepped for install

I whipped up a bunch of wet flox first and slathered that in the hole, then I followed that up with a flox paste and installed the pitot tube assembly.

I then laser sighted it again to ensure it was still tracking straight on the CL.

Pitot tube floxed in place & aligned

Here’s a profile view of the installed pitot tube.  If the pitot tube looks as if it’s pointing down, it’s an optical illusion.  I swear I saw this pic and thought my pitot tube would cure in a pound of solid flox in the wrong position!  So I double, triple and quadruple checked windage & elevation, and the elevation on this pitot tube perfectly matches the longerons. And due to this pic below, I seriously checked it about every 10-15 during the curing of the flox!

Also, as I was figuring out the spacing requirements for installing the pitot tube, I determined that for clearance of the pitot tube fitting that sits just inside the battery compartment, on the aft side of the F-7.75 bulkhead, that I couldn’t mount the aft end of the G10 sleeve any farther than 1.05″ from the front face of the F-7.75 bulkhead.  When I mocked up the pitot tube install, I found that a 0.5″ protrusion of the G10 sleeve on the front tip of the nose cone equated to a 1″ gap between the aft end of the G10 tube and the front face of the F-7.75 bulkhead.  Requirement met!

Pitot tube floxed in place & aligned

Here’s a shot of the installed pitot tube a couple of hours later after the fast hardener used in the epoxy/flox was getting to a solid green stage.

Pitot tube installed!

I again reshot the laser to sight the pitot tube’s alignment with the CL.  Bravo Zulu!

Checking final pitot alignment with Laser

I spent at least 20 minutes, if not 30, using the L-shaped side of a scribe to dig flox out from around the aft end of the pitot tube fitting and wires that I had previously taped up. The first inch inside this hole, between the front face of the F-7.75 bulkhead and the G10 sleeve is where the fitting and wires attach to the aft side of the pitot tube.  I definitely didn’t need any flox in this area, but there sure was a heck of a lot of it, 90% of which I couldn’t actually see!

Attack of the electrical tape…!

Almost 3 hours later, when the flox was barely gummy and close to a full cure, I removed the pitot tube by rotating it CCW looking from the front of the nose and then pushing it all the way through the G10 & into the battery compartment.  I then cleaned up the pitot tube and set it aside until later.

Pitot tube removed & cleaned

Then, as per my original plans, I applied firm pressure with both hands and wiggled the nose cone slightly until it popped right off the F-7.75 bulkhead.  The 4 blobs of 5-min glue had done their job perfectly!

My removable "radome"

Here’s a shot of F-7.75 bulkhead after I removed the nose cone.

Nose tip removal aftermath

I then set to work to remove the foam in the center area around the pitot tube aft end, including of course the G10.  And then also clear out a channel for the nose mounted landing light.

Measuring out for foam removal

Here’s the beginning of the “Big Dig”!

Removing foam & tape

And later on, after I completed the digging out of the pitot tube G10 sleeve (including that tape I had added to protect the seam between the 2 G10 pieces) I cleared out the foam for the landing light.

In addition, I ran a straight edge across the foam & checked the distance from the foam face (front of F-7.75) and the aft edge of the embedded G10 sleeve.  I got 0.97″ using the digital calipers.  Since I didn’t want more than an inch, all is great with this spacing.

Shaped & ready or BID layup

Since I have a decent sized dished out area for the landing light, I wanted to add some more strength internally to the nose cone, besides just relying on the external skin for all the strength.  In addition, I wanted there to be some actual glass securing the pitot tube in place, so I felt an internal layup here would be most appropriate (said in Conehead voice).

I then glassed in the side walls and upper wall of the landing light area, and the inverted cone area around the pitot tube G10.  Around the base of the G10 and on the upper wall of the landing light (down the front side of the G10 tube as in the pic below) I used a fair amount of flox.  I also used 2 plies of BID on the upper wall/G10 side, whereas I only used 1 ply of BID for the other areas.

Inner nose cone BID layup

Before I glassed the internal foam on the nose cone (above), I hooked the landing light up to the battery and fired it up.  I then set the nose cone in place, and with the translucent foam –especially how thin it is in the landing light channel area– I could see exactly the size & shape of where the lens cover would need to be mounted.  I marked that up with a blue Sharpie and then pressed on to glassing the interior of the nose cone.

Landing light lens cover area marked

Tomorrow is New Years Eve.  I’ll be working on the project until probably mid-evening, then taking off for the festivities.  I had really wanted to get the external side of the nose glassed before New Years, but with the challenges of the landing & taxi light installs (yes, there will be a separate taxi light! . . . more to follow) I think it will be more like the 2nd or 3rd of January before I get to that point.  I would rather have everything correct & optimized than to meet an arbitrary timeline.

Tomorrow I plan on finalizing the landing light install.  I’ll then also be installing and glassing the center H100 foam piece into the battery compartment between the BC1s.  If that all goes well, then I’ll also reattach the nose cone.

 

Chapter 13 – Nose job

Today I started off by cleaning up the left side panel by first pulling the peel ply, then razor trimming and sanding it.

L battery area side panel glassed

L battery area side panel glassed

I then did the same thing with the right side panel.  I also drilled out the bolt holes.

R battery area side panel trimmed

I then test mounted the battery contactor.

Battery contactor screwed to mount

And then test fitted the right side wall with the contactor mounted in place.

Checking battery contactor fit

Checking battery contactor fit

I then made up some prepreg setups for the BID tapes to mount the right side panel.

Prepreg setup for R-side BID tapes

I realized when I was uploading these pics that I missed taking a pic of the right side wall after the layup.  So after the right side panel cured, I pulled the peel ply and cleaned up all the peel ply boogers.   I razor trimmed it as per usual, and then sanded the edges.

I drilled out the holes in the contactor mounting plate and then mounted the contactor.  Before mounting the contactor I terminated & labeled the 30 Amp inline fuse wire and the control leads on the contactor.

In addition, I attached every wire & cable to the lower terminal that will actually be mounted in the final configuration to ensure that all the wire runs are good.  The only thing I could improve upon here is to cut the lead wire form the 30A inline fuse down an inch or two.

R side wall glassed & contactor mounted

I then checked the fit of the battery with the contactor bolted into place.  I was very pleased with the clearance between battery & contactor since it was even about 0.070″ more than I thought it would be.

Testing battery & contactor fit

The space on the right side of the battery is a bit tight due to the 3 big cables all trying to get through that narrow space: the 2 big power cables going to/from the firewall and the main power lead from the battery to the battery contactor.  It’s definitely crowded, but not unworkable or impossible.

contactor mounted & battery fits

Here’s a shot of the cable & wire runs to/from the battery contactor.

Battery contact mounted

After I got the right side panel of the battery compartment squared away, I started prepping the F-7.75 bulkhead for mounting the nose tip foam to finalize the shape of the nose.  While I was trying to assess the front tip of the nose, I felt I just needed a better visual of the “flow” of the nose.  I picked up a saw and started hacking away.  I then used my hard sanding board and my “cheese grater”.

About 30 minutes later I had this.  Satisfied, I stopped for the time being and pressed forward with the nose tip.

Nose trimmed a bit

The nose tip is 6″ deep, so I had originally planned to use 3 pieces of 2″ thick foam stacked in wedding cake fashion.  My thought was that the aft 2 pieces of foam would be the blue large cell (wing) foam with a PVC foam front tip.

When I tried to locate a suitable sized PVC foam for the very front tip, I couldn’t.  The only way I could fulfill my plan was to glue 2 pieces of PVC foam together.  So I decided to go with all blue foam.  I’m using  the blue foam for a couple different reasons besides not having enough PVC.  First, I have a TON of it on hand since it encased all the wing foam cores and other flying surface I received from Feather Light.  Second, I had originally planned on building the entire nose with the blue foam to cut down on weight.  Since the original nose identified in the Long-EZ plans called for Urethane, and the foams are the same strength (2 lb/cu ft), I was going in that direction until I ran across the Davenport nose plans, which calls for the PVC/Divinycell foam which is stronger at 3 lb/cu ft.

I still plan on using the blue foam on the top portion of the nose.

I grabbed a nice piece of 2″ thick blue wing foam to use as the first (aft) piece that will physically mount to F-7.75.   I then marked the center of the foam piece.

Front nose piece

I then roughly marked the outline of the F-7.75 bulkhead. and cut the foam on the online (not shown).

Marked for trimming

I was hunting around for better pieces of foam to use in front of the piece above, analogous to the top 2 layers of wedding cake, when I ran across a 6-1/2″ thick piece block of foam in my shop storage closet.  I ended swapping out the piece above out with this new foam block.  Of course, not until after I cut the piece above into a circle!

With my foam block in hand, I decided to use a large bolt to clamp it in place.

Front foam nose block clamp bolt

I then drilled out the center of the block with a 1-1/4″ bit.

Drilling front nose foam block

Here’s a closer look.

Drilling front nose foam block

And the final result.

Front foam nose block

Front foam nose block

I then mounted the foam block tip to the front of the F-7.75 bulkhead by first applying 4 dabs of 5-min glue first, then bolting it in place to act as my clamp.  To make things just a tad EZ, I will use the large washer on the front tip as the “sand to” line for shaping the front nose tip.

I used 4 dabs of 5 min glue to attach the foam block to F-7.75 and to help stabilize the foam block while I shaped it.  Obviously I have a hefty bolt through the middle of the block, but I want to avoid any twisting or rotating slippage as I applied sanding force to shape the block.

 

Mounting nose tip foam block with 5 min glue

Here’s my new nose below.  Nice look huh?!

Eventually I plan on removing the nose piece after it’s shaped to gain access to the inside area to get the heated pitot tube, landing light install, light housing & heat shroud all squared away.  I’ll then flox the entire nose tip assembly back onto F-7.75 before glassing the lower nose.

Foam nose tip mounted

I then carved the nose tip down to get it closer to its final state.  There’s still a long way to go of course, but I just wanted to get the major excess foam bits removed before I called it a night.

Nose tip initial shape

Here’s another look (with Napster peeking up from behind…)

Napster hiding out

Tomorrow I’ll work a fair amount on the overall shape of the nose, and of course work on the front nose tip.  I’ll also be finalizing the install plan for the heated pitot tube.

 

 

Chapter 13 – Walls closing in…

…. for the battery that is.

I started today by pulling the peel ply from last night’s layup of the nose battery compartment floor pans.  I then razor trimmed & sanded the edges of the 2-plies of BID.

Bottom battery compartment panels trimmed

On the right side I spent a good 45 minutes cutting the glass from the bulkhead cable access holes that where drilled through Napster.  On the hole for the big cables especially I had to do a fair amount of trimming and sanding to get the grommet to fit.  Actually, I also had to trim a little bit more off of the grommet for it to fit.

I then remounted the 30A inline fuse to ensure it fit, which it did fine.

Checking component fit after floor inst

In addition to simply remounting the inline fuse, I quickly set the battery in place to double check that the clearance was good between the two.

Checking component fit after floor install

With the floor pans good to go, I then started working on the side walls.  I spent a decent amount of time locking in the angles and dimensions, and started on the left side wall.  After getting the sidewall cut & sanded to fit, I was then able to cut the channel for the pitot tubing coming in from the F22 area.

Pitot tubing channel cut on Left side

Here’s a shot of the side wall in the orientation it will be in when installed.

Pitot tubing channel cut on Left side

And here’s the shot of the outboard side of the battery compartment left side wall.

Battery compartment left side wall shaped

I then ran into an issue. which would have been a problem had I not been able to remedy it quickly! ha!

As I’m sure you know, I have a retractable pitot tube.  The in & out motion of the pitot tube requires a little bit of flexibility in the pitot tube line.  Unfortunately, I miscalculated just how tough (READ: “Inflexible”) 1/4″ Nylaflow tubing really is.  In my initial test, I cut the overhang on the pitot tube line and installed it into the pitot tube’s quick disconnect fitting.  It fit fine if I were only going to leave the pitot tube in the extended position.  But when I tried to push the pitot back into the nose to its retracted position, WTHO? … I might as well have had it attached to a 2×4 vs the Nylaflow.  This was NOT going to work.  (Remember I mentioned yesterday about “assumptions” …. hmmm, ooops!)

I grabbed all the related fittings I could find, the piece of Nylaflow I just cut off and the pitot tube and headed upstairs.  I spent about an hour in research mode checking what pieces parts were available and working through different machinations of how I could configure this thing.  Besides merely the flexibility of the tubing, the angle of the sidewall meeting the F-7.75 bulkhead was a bit of a challenge in just how to angle the fittings to get this thing to work.

Luckily, my curiosity worked out this time.  I had ordered a couple of the black nylon barb fittings early on in the build to see how they would work in the pitot/static system . . . before I knew about the quick disconnect assemblies that Stein sells.  Then, as I was working the through my pitot & static line requirements before installing the pitot tube line in the nose side panel, I ran across a note in the Trio autopilot installation manual that stated 1/4″ Tygon tubing from McMaster-Carr could be used.  Well, it would just so happen that not too long after that, I had an order in at McMaster Carr that was a couple dollars shy of their minimum $40 order requirement.  Luckily, I remembered the Tygon tubing and ordered a couple feet, again more out of curiosity (and to meet the $40 limit) than anything.

Ahh, serendipity at its finest.  So, I pulled the quick disconnect fitting and replaced it with the less sexy black nylon barb fitting.  I used the vastly more flexible Tygon tubing as a looped cross connect to the Nylaflow, which of course required a quasi jungle of fittings for the connecting of two non-homogenous lines.  This of course mandated securing those fittings to the sidewall: enter Adel clamp, enter RivNut . . . and exit my EZ-PZ pitot tube connection, stage left! (As you can tell simply by the sheer number of words spent on this topic in this post!)

But enough words . . . I probably could have simply provided you with the below pic and you could have derived all I said out of it!

Checking retractable pitot tube line

Ok, back to some real work.  I snapped this shot since it was the first look at the finished sidewall shaped to fit in place.

Fitting left side wall

I drilled out the holes for the 2 Rivnuts for the pitot tube line fitting assembly.  If you’re wondering why there are 2 Rivnuts so close together, it’s because I have 2 possible options for fittings, and I want to allow for both of them.

[Note: For you sky-is-falling naysayers out there that say I’m doubling the weight by adding another Rivnut, you might like to know that that I can’t even get one these things to register even a gram of weight on my scales … and I said that in the plural because I have 3 scales, and each one shows the weight of the Rivnut as a whopping “0” grams.]

Rivnut holes

I then mounted the Rivnuts in the holes.

Rivnuts floxed in place on Left side

I then matched the right side wall panel foam blank with the left side and marked up the right side as a mirror image to the left.  After cutting the right side panel and sanding it to fit, I mocked up both panels to verify the fit of the battery.

Checking right sidewall & battery fit

I also checked to ensure that I had a good amount of sidewall foam in contact with the bulkheads and the floor.  Now is probably a good time to mention that the aft lower corners of these side walls, at the intersection of Napster & the floor pan, looks a bit narrow.  I may end up adding a bit of filler material if required, but I’ll wait and see if it will be needed.

Checking right sidewall & battery fit

To keep the sidewalls on their marks, I pulled in the aft side of the walls and expanded the front . . . it all looked good.  (You might notice the dixie cup taped to the battery post.  I didn’t want to inadvertently leave a metal clamp resting against those tall vertical battery posts and fry my expensive battery . . . or cause any smoke.)

Checking right sidewall & battery fit

I then got to work on finalizing the installation location & orientation of the battery contactor. As I’ve said literally a gazillion times, there is not a lot of usable space in the nose, and the battery compartment is big enough for all the stuff I’m putting in there . . . just barely.  Also, to atone for my sins of dishing out the NG30 compartment nose side panels, I’m leaving these battery compartment side panels straight, primarily since I have no reason or requirement to dish them out.

Testing different orientations for contactor

After playing around with the contactor positioning a bit, which included a constant in & out with the main battery, I figured out where it needed to go.  Below is a shot of the final contactor installation spot.  BTW, if you’re connoting aloud to the computer that I clearly have no idea how to install a contactor if I’m mounting it sideways, then I’m happy to report that that’s exactly one of the primary reasons why I’m using the Gigavac GX-11 battery contactor.  Not only can it be mounted in literally any position, but it also consumes less than a 1/10th of an amp to keep it closed (vs the normal 1 Amp draw).

Found a spot for the contactor!

This wasn’t my first choice or preferred orientation of the contactor, but it will work fine.  It did cause me to have to bring the big power cable forward and loop it back in order to get the cable’s connector angle correct.  This of course mandated securing the long length of cable to the sidewall.  Another Adel clamp.

Determining contactor final mount spot

The contactor mounting location exercise, and subsequent requirement for an Adel clamp, got me to assess my cable management requirements.  I would be bringing wires in from the very front of the nose, from 2 lights, a heated pitot tube, and the gear back-up battery, in addition to mounting my TCW IBBS on the left side of the battery compartment.  These all add up to a fair number of wires in & around the battery compartment.  Clearly it would be grossly irresponsible of me not to keep these wires under wraps (pardon the pun!).

So, as I was prepping the left side panel for its install onto the nose, I added another Rivnut to the lower side panel.

Then, to get the orientation of the Adel clamps aligned parallel to the wire runs on the front & aft side of the battery, I drilled 3 Rivnut mounting holes into the edges of the BC1s where I had determined that I would need them.

Drilled edges of BC1s for RivNuts

After this nitnoy stuff was out of the way, I whipped up some thick micro and mounted the nose battery compartment left side wall into place.  For some reason (how many times do we say this to ourselves?!), however great the side panel fit when I was mocking it up, it really became a pill when I was mounting it for real.  I pulled it out and re-slathered it with all the micro that had oozed out everywhere and that I had collected back in the cup.  I then remounted it in place and then clamped that sucker to keep it in line.

Mounting left nose battery compartment sidewall

I let the micro cure a bit as I cut 2 pieces of BID off the spool for each side wall. As you can see, I also mixed up some fairly dry micro and buried the pitot tube line with it.  My goal of course was to get the pitot tube line channel even with the surround foam.

Mounting left nose battery compartment sidewall

After cutting 2 plies of BID for each side wall, I then laid up the left side wall using fast hardener.  The layup went ok, but since the micro was well into the green stage –since I had let it sit longer than normal due to the clamps holding it in the correct position– it was stubborn in holding its less than perfect fillet shape.  The fillets were somewhat distorted due to the movement of the sidewall before I finally clamped it in place.  A minor oversight that I didn’t rework them, and as I was laying up the BID, it became a minor annoyance.

Left nose battery compartment side wall

Here’s an outboard shot of the curing, glassed left side panel.

Left nose battery compartment side wall

With the left side panel install layup curing, I went to work on the right side panel.  I added another couple of Rivnuts and then started working on the battery contactor mount.  I first cut off the corners of the 1/4″ Finnish Birch plywood (same that’s used for the firewall) mount in which I have the M5 Tee Nuts installed.  I then used the plywood contactor mount as the template to cut out a 1/4″ deep cutout in the foam sidewall.

Contactor mounting plate cutout

Once the cutout was good, I cleaned it out, whipped up some flox and mounted the battery contactor mounting plate in place.

Floxing in battery contactor mount

I then laid up the up the right side panel with 2 plies of BID and peel plied the entire panel. I guess here would be a good point to say that, unlike the left side panel, I will be glassing in this side panel the way my buddy Marco glassed in his main nose side walls: glass them first then install with BID tapes later.  I’m doing it this way mainly because of having to install the battery contactor mount.  I didn’t want to mess around with that while concurrently attempting to layup 2-plies of BID vertically in a cramped space.  So I minimized my variables.

Right nose battery compartment side wall

On my right side nose panel layup there was a very slight mound of flox over the battery contactor mount that I wasn’t successfully able to level out with the squeegee.  So instead of making things worse, which I have an incredible knack for, I simply put some plastic over it, laid a large piece of wood on the plastic and weighed all that down with 2 gallons of paint.  That should do the trick!

Weighing down contactor mount R side wall

Tomorrow I’ll clean up these layups, get the right side wall glassed in and then start work on the very front of the nose.  Slowly but surely it’s getting there.  I’m thinking my fine looking nose is just around the corner!

 

 

Chapter 13 – Floor pans: Round 2

Today was a warm beautiful day so I figured I better get some Alodining in while I could since I needed to Alodine the battery mount tube and the skid plate.

As for the skid plate, originally, I was going to simply install it under a number of layers of glass, and then drill the holes & tap them after the glass had cured.  I changed my mind though figuring it was easier to drill and tap the holes before mounting it.  I mocked up the rubber bumper and marked the spots for the bolt holes.  I then drilled the holes with a 13/64″ bit.  I went to grab my my 1/4-28 tap that I assumed was with all my other taps before realizing that I apparently didn’t have one.  Yes, we all know what happens when you assume!

Marking Skid Plate for Bumper Mount

I ended up Alodining the parts anyway, but as they were drying I ran to Lowe’s to grab a 1/4-28 tap set.

In addition, as I’ve mentioned before, my Alodine chemicals are on death’s door.  I left the parts in the Alumaprep for about 15 minutes (vs the normal 2 minutes) and the same for the Alodine in order to get an acceptable application.  You can see the parts below:

Skid plate & Battery mount tube Alodined

I then rechecked my notes and my measurements, marked up the 2″ Divinycell foam, and then cut the foam.

Cutting Battery Compartment Side Panels

Cutting Battery Compartment Side Panels

I first cut the foam the entire length at 7″ wide (actually high).

utting Battery Compartment Side Panels

And then cut that piece in half to give me my two nose battery compartment side panel blanks.

utting Battery Compartment Side Panelsutting Battery Compartment Side Panels

I played around with the side panels a bit up until I just really couldn’t do any more without knowing the exact angle, width and configuration of the battery compartment bottom “floor” pans.

Left Side Panels

I cut the main floor pieces from the remaining strip that was left over from cutting out the side panels.  I then added a wedge on each side of the floor pans just enough to provide the required width towards the aft side of the pan near the Napster bulkhead.

Battery compartment right floor pan

On the right floor pan I marked up a couple spots that I needed to dish out for clearance for the big pair of power wires coming in from the NG30 area, and also for the 30 Amp inline fuse that I mounted yesterday.

Battery compartment floor pans

Here’s a couple shots showing the dished out areas of the floor pan for both the big wires and the inline fuse, which I mounted to check fit.

Tweaking right floor pan

Tweaking right floor pan

Once the floor pans were fitted and the required modifications made, I started the floor pan install by first floxing the battery mount tube in place.

Battery mount tube floxed in place

Battery mount tube floxed in place

I then floxed in the inboard battery compartment floor pans and clamped them in place.

Floor pans floxed in place

The left floor pan didn’t want to track the line I had marked on the bulkheads, so I added a couple of clamps to keep it in the proper position.

Tweaking left floor pan

I had used fast hardener, but to really get the flox curing I threw a heat lamp on it aimed primarily at the left side.  I took a short break, and when I came back I mixed up some more epoxy and added that to the somewhat gummy flox along with some micro to mount the outboard side foam wedge pieces to complete the floor foam install.

After the foam wedges were flocro’d in place, I screwed them in tight with a few screws on each side.  I placed the screws in locations that will not even touch the foam that remains in the nose structure after it’s sanded to shape.

I then used the remaining micro to add a fillet around the perimeter of the left floor pan.  After that, I mixed up some new micro slurry and micro’d the floor pan surface.

Left floor pan micro'd

I laid up 2-plies of BID on the left side.

Left floor pan 2-ply BID layup

And then cut some more BID for the right side.  I figured that I would show you how I have to cut glass currently, since my shop is so crowded!  My fault though, since if I had finished the canard & elevators I would have more room.

How I'm currently cutting glass!

I then glassed the right side floor pan with 2-plies of BID as well.

Jumping ahead, you can see below where I peel plied the layups

Battery compartment floor pans glassed!

Here’s another couple shots of the glass battery compartment floor pans.

Battery compartment floor pans glassed!

Battery compartment floor pans glassed!

My goal for tomorrow is to finalize the fitting of the battery compartment side walls and get those glassed in.

 

 

Chapters 13 & 22 – Wig-Wagging!

The first 2 pics below are pics I actually took on Christmas.  I didn’t do much in the shop, but I did actually get a fair amount of stuff done on the computer, updating spreadsheets, etc.  I also printed out some labels for the 6 AWG wire that powers the main buss from the battery contactor, and the 8 AWG wire that links the starter to the starter contactor.

Bigger wire labels

You can see the white 6 AWG cable labeled below.  It’s paired/will be paired with the black 4 AWG panel ground cable (I bought it when I had a different configuration, but it will still work fine).

Main buss power cable

This morning I printed out the 1/2″ big labels for the black panel ground cable above, and also for the big yellow power wires that will run the length of the fuselage.

BIG wire labels

I also printed off one label for the big battery cross-connect cable that provides the power to the battery contactor.  (Later on, after mocking all the nose battery compartment components up I just couldn’t make this cable work.  Since it’s “technically” supposed to be 6″ long, and it will be more like 11-12″ long, I’m upgrading the cable to a bigger 2/0 AWG cable to allow for the impedance from the extra cable length.  I ordered the new cable this evening).

Main power connect (will get swapped out)

The next task on my to-do list was to add about a 1/4″ to the left side of the F-7.75 bulkhead.  I could offer conjecture on what happened, but it was simply a product of the “layup from hell” that occurred when I mounted the BC1s to the front F-7.75 bulkhead. The bottom line was that I jacked it up pretty good, and just like all the sins from the past that I highlight now & then, this is one of them.

I cut out 2 pieces of H100 high density foam into what you’d essentially see in the last phase of the moon when it’s nothing but a sliver, only in 2 pieces.  The widest point, where the 2 pieces meet at the 90° point on the left side, is 0.25″.

I then grabbed 2 pairs of triangular scrap pieces of BID, and put them in plastic for a prepreg setup.

F-7.75 Bulkhead extension foam

Here’s my “PacMan” layup after I floxed on the 2 pieces of foam, laid up 1-ply of BID over the foam and adjacent F-7.75 glass, and then peel plied it.

F-7.75 BH left side extension added

Here’s the aft view.

Aft view F-7.75 BH left side extension

I set up a heat lamp on the layup and headed out to run some errands.  It was cured by the time I returned.  I pulled the peel ply, razor trimmed & sanded the edges, and then used a scrap piece of wood to check the distances from the bulkheads on each side.

First the left side…

Left side measure

And thankfully it matched the right side! I’m back in business and my distances are the same between the bulkheads on each side, and from the center of F-7.75 in each direction left & right.

Right side the same!!

I used a sanding drum on my drill to widen the center pitot tube access hole.  There wasn’t a lot of finesse using the drill, but it’s big enough and close enough for what I need now.  I’ll dress it up more symmetrical later [believe it or not, all my actions today are in attempt to get to filling in the battery compartment floor & sides with foam!]

Middle pitot tube hole widened

I then mocked up the pitot tube to get the correct spacing & clearance for the landing light. If you haven’t seen my heated pitot tube in action, then you may be wondering about this setup.  The light green material at the aft side of the pitot tube is G10.  There’s more of this G10 that will cover the pitot tube for a few inches from the forward end of the G10 shown.

Also, if you look at the G10 in the pic, you can see a slot & a notch, which is for use on the ground.  When this bird is ready to graze, I’ll simply pull the pitot tube out slightly (forward), turn it about 90° starboard and then push into the nose until it’s almost hidden away.  This will keep any crumb-crunchers (okay, anyone!) from stepping on the tube when at fly-ins, etc.

Assessing pitot tube placement

Here’s how I kept it in place on the aft side.

Keeping pitot tube in place

I messed around with the landing light to get an idea of how to mount it.  The landing light is an AeroLED MicroSun light that includes the wig wag feature. I bent the mount (that I bought separately) so that it positioned the light at an 11.4° down angle as shown below:

Landing light mount angle: 11.4 deg down

Since I need absolutely all the space I can get for the light to just barely fit into the nose area, I marked the front of the F-7.75 bulkhead to cut a slot for the landing light bracket to actually get mounted on the AFT side of the F-7.75 bulkhead in the battery compartment, so that only the mounting arm will stick out of the front of the nose bulkhead.

Landing light bracket mounting groove

Here’s a shot after I finished cutting the slot for the landing light mounting bracket.

Landing Light mounting groove cut

Below is a longer view of the slot cutout, and then a front view of the landing light installed.

Front BH getting there!

Frontal view of landing light

This is the crux of what I was after by messing with the landing light & the pitot tube at this juncture: the clearance & space between the pitot tube and landing light, and of course getting a handle on the wire runs for both of these components.

Spacing between lanidng light & pitot tube

And here’s the aft side of F-7.75 in the batter compartment where the majority of the landing light bracket will reside.  This is a horrible pic in that you can see how far off I ended up being on the install of this bulkhead… blech!  If you added about a 1/4″ to the left side you can see where it would match up.

One good thing is that by widening it, I’ll get just a touch more of the “F-16” nose look with the nose just slightly wider than it is tall.  We’ll see!

BTW, remember me saying that my “Spidey senses” were tingling a couple days ago… making me not want to micro the middle H100 foam piece in between the BC1s?  Well, I honestly didn’t think at that point about mounting the landing light bracket where it is now. It would have been a real pain trying to do this with that foam micro’d in place!

Aft side of landing light mounting groove

I grabbed a couple of alligator clip wire connectors from upstairs along with an inline 3 amp fuse and quickly fired up both the light and the wig wag feature to ensure all was good with my light (and do some mental night landings!)

Landing Light works!

Here’s the beam on the wall about 6-7 feet in front of the nose.  As you can see, this beam is very tight, so it will need to be aimed correctly, but will make for a nice landing light. This is just the beginning since I’ll end up having enough lights on this thing to make it look like a UFO!

Landing light test - very focused beam

Here’s a very short video I made showing the landing light’s wig wag feature:

Next, in preparing to cut the foam panels for the battery compartment, I wanted to get all the electrical components placed & configured.  To do this, I had to know exactly where my wire/cable runs would terminate.

I started with the B-hole (vs the A-hole . . . haha!  Some seriously LOL right now!)  On my diagram for the wire runs that I posted a few days ago, I showed that I was going to run everything through 2 holes in Napster: hole A & hole B.  Well, that morphed into 3 holes, A, B & C.  The hole I started drilling here is the new hole B.

After taping some stuff up to keep it from getting all dusty, I started with a small pilot hole from the aft side of Napster.

Main panel power +/-

And here it is on the front side of Napster.

Spotter hole

Knowing what my required diameter was, as well as my grommet size, I used a 1-1/8″ spade bit to drill this hole.

"She's Ready Captain!"

Here’s one-eyed evil Napster! [He really started getting so mouthy that I ended up sockin’ him one!] . . .

One-eyed Napster

And here’s black-eyed evil Napster!  Ha! [Or maybe the Evil Borg Napster, with that tube sticking out of the side of his cheek!]

Black-eyed Evil Napster

I then ran the main buss power cable and panel ground cable through my freshly mounted grommet.

Main buss power & panel ground cables

Below is a shot showing the proximity of the panel ground cable to the negative battery terminal.  Yes, as with many items on this plane, I bought this cable once I had “finalized” the primary components of my electrical system (Yeah, right!).  I found a way to use it though and keep both the power and ground legs to the panel just about as short as you can possibly get in a Long-EZ, barring mounting these on the aft side of F1-3 (Napster).

Proximity of panel ground to battery post

Here’s “the Bridge” that is made up of the main buss power & panel ground cables that will be supported on each side with an Adel clamp.  In addition, I’ll be using a high end type of shrink tubing that will really add rigidity and strength to this “cable crossing.”

Main Buss, E-Buss & Panel Ground Cables

As you can see, the 12 AWG red E-buss power wire coming out of the Battery Buss Relay (mounted on the aft side of Napster on the right in the above pic) will jump aboard with these 2 big cables coming out of the battery compartment.  Currently, these 3 cables/wire will be all that is in this run and held in place by these specific Adel clamps (3 total Adel clamps within the NG30 area).

Main Buss, E-Buss & Panel Ground Cables

I then started in on the really Big power cables that run the length of the fuselage.  I took the two 1/2″ holes that I had drilled previously and cut out the center divider and made them into one big hole.  (Yes, this is the “Big A-hole” … haha!).

I spent a good half hour using my Perma-Grit tools and my Dremel Tool to get this thing into a big enough oval so that it would accept the grommet that I bought at an auto parts store tonight.  (BTW, I had to modify both of these grommets to get them to fit.  I widened the groove on the top grommet for hole B by about 0.060″, and on this one I did a little bit of creative reshaping as well, mainly on the edge that mated with the interior side of the hole).

Hole & grommet for big power wires

Here’s a shot of both “grommetted” holes tonight.

"Holy" Napster!

I took the pic on the right first, but it’s a tad blurry, so I backed up a bit to get it to focus better.  Clearly I decided to post both pics for your viewing pleasure!

Hole & grommet for big power wires

Hole & grommet for big power wires

I then ran the big power cables through their Adel clamps & through the hole & grommet to ensure they fit.  In addition, I was also looking to ensure that they played well with the other wires that have to traverse Napster via the same hole (I’m talking about the Battery Buss power lead & the SD-8 backup alternator power lead … which is fed by one of the leads coming off the inline fuse in the pic below).

Finally, please note the faint horizontal pencil line in the pic below.  This line represents the minimum install height of the battery compartment floor pan.  Clearly I’m going to have to dish out a small area to make allowance for the big power cables and the grommet.  THIS is exactly why I’m getting this stuff situated, so I can plan out how I need to configure and build the battery compartment bottom & side foam panels.

Big wires through Napster

As you can also see, I labeled the top big cable (I’m only using one big cable folded in half for these test fittings, so clearly I’m not going to mark the other side).  I thought I’d get a long view shot of the cables in place against the nose side wall.

Long view of big power wires

And a close up shot of the big power cables traversing Napster’s domain.

Aft Napster view of big power wires

I took this shot more from the perspective of what would be seen when the nose hatch is open.

Side shot of big power wires

I played around with the 30 amp inline fuse that sits at the head of the power line for the B&C SD-8 backup alternator (the PM alternator mounted to the engine vacuum pad).

After deciding on a final location, I drilled a hole for mounting it.  However, I didn’t actually mount it until I finished drilling the bulkhead hole C, as you can see in the right pic below.

Wires galore!

Backup alternator fuse mounted & new hole!

Here’s a closer shot of both the new hole C and the mounted 30A inline fuse.  Hole C is where the majority of wires from the battery compartment and nose tip will exit points north and head back to the vast collection of electrons that will reside in, around & near the Triparagon (electrical component “tree” feeding nearly every device in the aircraft).

Backup alternator fuse mounted & new hole!

I drilled hole C exactly 9/16″ in diameter since I do not have a grommet for it on hand, but this hole diameter is exactly what’s required for the grommets I have Teed up & ready to order from McMaster-Carr.

Last hole in Napster

Again, although my endeavors over the past week may have seemed overly electric-centric, I now know exactly how I need to play installing the panels for the battery compartment and the nose for all this stuff to fit nicely.  I learned that I’m going to need to position the battery contactor in a slightly different place, and in a slightly different orientation, to greatly facilitate all the power feeds to & from it.  To do this after the walls were in place would have made it incredibly more difficult and compounded the amount, time & effort of work greatly.

I can now say that with all this configuring behind me, I really do believe that tomorrow will see the battery compartment panels cut and, at a minimum, micro/floxed in place!

 

Chapter 13 & 22 – Brake & Line Dance

Today I took a few hours to get some well-needed organization of my hardware knocked out.  With all the smaller hardware that I’ve ordered over the last month, I really needed to put it all in some sort of order to make finding stuff occur more quickly and easily.

Due to it being Christmas eve I didn’t get back to the build until later in the evening, and by then I didn’t want to make any noise cutting the foam, so I worked on getting the brake system figured out.

I pulled the right brake line coming in from the aft of the fuselage and cut it shorter, re-flared it, and then connected it back to the mini-bulkhead,  I also cut the right brake line that connects to the parking brake valve, and then flared it as well.

Connecting brake lines

I then connected the parking brake valve to the freshly cut & flared brake line to check fit & alignment.

Brake line connect to Parking Brake

I then cut, re-flared & remounted the left side brake line that connects to the mini-bulkhead fitting.

Left brake line refitting

I then cut, rerouted slightly and flared the left brake line that leads to the parking brake valve, finalizing the aluminum brake line work in the nose.

Brake aluminum tubing completed

I then connected the other side of the parking brake valve with the nylon brake line included with the Matco parking brake valve

Parking brake to master cylinder tubesI had originally planned to mount the clear brake reservoirs on the nose sidewalls, but after messing around with the nylon tubing for a bit, I decided to wait and better figure out the specific configurations and mounting locations for the reservoirs.

Parking brake to master cylinder tubes

I then test fitted the main power cables in order to finalize the locations of the cable holes transiting from the NG30 side of Napster into the battery compartment.  I wanted to get these holes drilled before I installed & laid up the floor plans in the battery compartment.

Main power cable pair test fitting

I then drilled the holes for the main power cables through Napster (not shown), and built the main 6 AWG cable that powers the Main Bus (connecting it to the battery contactor).

I started by printing out the labels for the 6 AWG main bus power cable, and also the labels for the 8 AWG cable that connects the starter to the starter contactor in the engine compartment.

Bigger wire labels

Below is a shot of the 6 AWG main buss power cable that I constructed to finalize the angle and location of the holes to be drilled for this 6 AWG main buss power cable, and the primary ground cable (black cable below) that will be paired up with the power buss cable, both coming from my electric components “tree” –again, I gave it the officious moniker of “Triparagon”– to the battery compartment.  This pair of power cables will enter the battery compartment through one of three holes that will be drilled for cable/wire runs. Actually, at least one, and maybe even 2 of these holes will technically be a pair of holes, one for each cable.  The holes will be a work in progress so it depends on how the cables & wires actually fit.

Main buss power cable

Tomorrow is Christmas so I’ll be busy being Merry (ha!), but I do plan on getting an hour or two in on the build (my kids are grown & live on the West Coast so I don’t have any overriding social commitments… sooooo… sniffing some epoxy on Christmas won’t get anyone riled up).

 

Chapter 13 & 22 – Prepping for nose foam!

Yes, it seems to be taking forever to prep & install the ancillary components in order to facilitate item placement in the battery compartment.  But I am inching forward.

I started today by pulling the peel ply from the Battery Buss & the E-Buss control relay mounting pad 1-ply BID layup that I did last night.  The layup turned out fine without any issues, so I cleaned it up and then drilled out the saran wrap plastic in the 6 embedded nutplates.    I’ll tell you, this small stuff is the stuff that turns into time busters, since there’s so many little steps.  And at the risk of sounding obnoxiously repetitive, that’s why I want to knock it out during the build –as well as for component planning purposes– so that I don’t end up with a completed airframe with no idea what I’m putting where!

As you can see, I also reinstalled the brake lines.  I’m skipping ahead here, but since this info is germane to the brake lines, I’ll tell you that I’m going to have to redo my service loops.  After doing an hour or so research on the next steps for the brake system, like the parking brake install & brake reservoirs, I stumbled across some stuff that I either missed or just wasn’t in the Tony Bengalis’ books.  Mainly that there should be no sharp bends in the brake lines and to keep it straight as possible.  Since I ran across a bunch of ACTUAL loops in steel & aluminum brake lines in my recent research, I figured about half a sine wave would be less stress inducing than a full 360° loop, but I guess any sharper type curvature is bad, so I’ll be remedying that soon.

Battery Buss & Relay mount pad

Clearly I’ve been giving my electrical system a fair amount of attention.  The main effort here with this mounting pad was to get the battery buss on the aft side of Napster (the F1-3 bulkhead) to minimize the number of wires going through Napster.  In addition, it utilizes space that up until this point was unclaimed, but some good real estate.  Finally, with the battery buss installed, I get a much clearer picture of where my holes need to go for the multitude of wire heading to the north end of the nose.

To get a minor jump on my electrical system, I went ahead and wired up the foundational wire runs between A) the battery contactor & the battery buss, B) the E-bus controlling relay to the battery buss/switch/E-Bus.

The work on the Battery Bus area included labeling the buss and the wires, crimping on the correct terminals, and confirming wire sizes and wire lengths.  Speaking of wire size, I committed a sin against Bob Nuckolls’ teachings since after reviewing my electrical wiring requirements I finally realized that I have a lot of long 14 AWG wire runs.  The feed from the Battery Buss to E-Bus is ID’d as a 14 ga wire, but since I had an extra 10 ft or so of 12 ga red wire, I used that instead.  That frees up my 14 ga wires for the really long runs where it would be a heck of a lot heavier to sub a higher gauge wire for the length of the fuselage, compared to the 2-3′ that I just did.

Below is the Battery Buss ATC fuse holder (bottom) and the B&C S704-1 relay mounted above the buss.  The large red wire heading back toward F22 is the power wire from the relay to the E-Bus, which is normally unused unless the scenario I described last night plays out where the main alternator is cooked, fried or somehow otherwise inop.

The white wire on the bottom center post of the battery buss is the 10 ga power feed wire connecting to the battery contactor just on the other (fwd) side of Napster.  This white 10 ga power wire will traverse Napster through one of the 2-3 holes that will all get drilled either below or to the right side of this new mounting pad.

Also, just an FYI for those folks not familiar with this system.  The Battery Bus is so named because it is the only buss that is always hot with live power.

Battery Buss & Relay mounted on pad

Tomorrow I plan to work on both the brake system and the getting the nose battery compartment are foam panels installed.  Well, at least the battery compartment floor pans.

 

 

Chapter 13 & 22 – This & that

I started out today actually spending some time finishing the blog post from yesterday.  Clearly I’ve been a little busy on the plane build so it can be a challenge sometimes getting a bunch of work done and then keeping the build log updated.

Due to the holidays and some work stuff I got a late start today.  As I mentioned in last night’s tome, I’m compiling another few orders for ACS, Stein, etc. and I’ve been doing a bit of digging to make sure those are complete as possible before I pull the trigger.

One item I worked on earlier was developing the order for my PC680 battery strap.  Since this will be custom made, I’m making sure that all the dimensions are absolutely correct.  I’ll probably pull the trigger on that order tomorrow or just after Christmas.

After dinner, I putted around looking for a piece of foam to act as a mounting pad for the battery buss and the relay that drive the E-Bus (Essential Bus) during an emergency if the main alternator fails.  The E-Bus will be driven by my 10 Amp back-up alternator, B&C’s SD-8, but if the main bus goes berserk, than a couple of switches need to be flipped to shut down & bypass the main buss & fire up the E-buss.  The relay that I’m mounting here is controlled by one of those switches.

I found a piece of 3/8″ scrap Divinycell with 1-ply of BID already laid up on it, and since I’m only laying up 1-ply of BID anyway, the other bit of cured BID is fine with me.  This is actually scrap from the big 3/8″ thick panel I did back in Germany that my side consoles & arm rests were cut from.  For this pad, I wanted 3/8″ thick vs 1/4″ thick foam so that the nutplates would have enough clearance.

Scrap foam for Battery Buss Pad

Ahh, speaking of nutplates, here they are now!  All 6 of those suckers… that I just made up tonight.  Actually, I’m getting pretty good at cranking those guys out and can gin one up now in just a few minutes.

The 4 nutplates on the bottom of the bus & relay mounting pad are the K1000-08’s, and the 2 on the top are the K1000-06’s.

"Ahh, nutplate city limits . . . "

And here’s a shot of the front of the Battery Buss and Relay mounting pad.  You may be wondering why I’m even going with this mounting pad vs just mounting these to the back of Napster (aka F1-3 Bulkhead).  Well, I just didn’t care for the idea of putting 6 holes, albeit small, into a primary structural bulkhead.  So I opted for this solution to minimize holes in Napster.  (I’m sure once you see the holes for all the wires, you’ll ask, “Who is he kidding?!”  ha!)

As you can see, I also beveled the edges to provide a nice ramp for the BID.

Front face of Batt Bus & relay mount pad

I dug around in my scrap BID pile but couldn’t find anything big enough to cover this piece.  Pickings are getting sparse in the BID pile!  I had to head to my local Glass Cutting Table and cut me a fresh slice off the rack!

I then put the BID in its pre-layup home: plastic, since ALL layups are prepregged . . . aren’t they?!  haha!  I traced about a 1″ space from the edge of the mounting pad onto the prepreg plastic to ensure that there would be a decent sized overlap for the BID onto the surrounding glass once the pad is attached to Napster.

Figuring out BID prepreg for layup

After filling the nutplates with plastic wrap to protect the threads and micro’ing them all into place with blue wing foam backers, I then proceeded to mount the pad.  In my new found love affair with 5-min glue, I actually left 3 small spots open on the back of this pad with no micro-paste in order to place dabs of 5-min glue.  I then pressed it onto the aft right side of Napster and held it in place for about 5 minutes.

I then cleaned up the edges, made sure the fillets were good and that the edge ramp foam was micro’d as well.  I then cut my prepregged ply of BID on the previous outline that I had drew and laid it up.  Here it is below with the outer piece of plastic still in place.

I should note that I realized a tactical error that I made just before I laid up the BID.  I looked at the pad, then grabbed my battery buss fuse block and held it in place where it would mount.  As I suspected, the access to the Fast-On tabs on the left side near the NG30 upright would be a little tight, albeit not anywheres impossible, to get the wires’ Fast-On connectors on & off… not that I’ll be doing that a lot once the electrogizmos are set.  But, just to add a little ease of access, I skooched the whole thing over to the right about 0.2″ and filled in the resulting gap with more thick micro.

Prepregged 1-ply BID laid up

I then pulled the prepreg plastic and proceeded to form the sides down into place.  I noted that for some reason at the upper right angled corner that the BID had split open and it wasn’t allowing me to coax it back to being somewhat normal.  With that corner being thin, I grabbed another piece of scrap BID and laid it up over the small corner split and pressed on.

After the BID was all wetted out and the lay down looked good, I peel plied the layup with one piece of peel ply cut at the corners so that it would lay down over the irregular surfaces.

One last note.  After I had pulled the mounting pad away from the NG30 upright almost a 1/4 of an inch, I noted after a bit of time laying up the glass that the darn thing must have moved some on me, mainly at the top, but it did move back towards the center a bit.

Oh, well.  No real harm . . . no foul.

Pad installed w/ 1-ply BID

I was also going to micro in the H100 foam in the center space between the BC1s for the front bulkhead, but as I was prepping to do so, my Spidey sense started tingling stating that I should wait until I clear up a few more variables surrounding the battery compartment components.  So, I waited.

Tomorrow I’m planning on putting the NG30 area back together after cleaning up the front battery buss layup and drilling all the Saran wrap out of the holes.  I also plan to get the spare tire figured out, the brake reservoirs and associated Click Bonds glassed in place, and the front nose foam cut and ready to glass into the battery compartment area between Napster and the F-7.75 bulkhead (which I’ve nicknamed “the Roundel”).

 

 

Chapter 13 – Hittin’ the brakes!

Funny, if you look at all the pics in this post you’d swear today was all about brakes, which I definitely hit some significant milestones with today.  In actuality, today was almost entirely spent on, you guessed it, the electrical system, but I’ll get into that in a minute.

I received my 3/16″ Statoflex 124 brake line hose assemblies today and they’re exactly what I wanted!

Stratoflex Brake Hoses

Here are a couple more shots.

Stratoflex Brake HosesStratoflex Brake Hoses

If Bob Nuckolls is the King of Electrons, then I’d say Tony Bingelis was the King of Engines, and almost all things mechanically related to aircraft.  Now, just as I have on occasion angered the gods, mainly Burt, (as if he actually knows what I’m doing… ha!) by violating his edicts with a few mods here & there, so too did I violate one of Tony’s.  Tony states to always go with new hoses and not NOS (New Old Stock), but given the history of these hoses, the care in which they were stored (detailed), the price compared to new, and the fact that they were EXACTLY what I was looking for dimensions & fittings wise, I just couldn’t pass them up.

Below is a shot confirming that the new hoses work with the AN3 fittings I have on hand. Sweet!

Checking AN3 fitting fit . . . it fits!

Continuing on with the brake theme, I spent the latter part of the evening working on my brake lines in the forward NG30 nose area.  I cleaned up the inevitable flox globs that formed on the edge of my threads just over the blue tape to offer me a really good challenge of removing 1/2″ pieces of blue painting tape.  (Maybe this is how the angered airplane guru gods get me back, by making even the smallest tasks a total PITA . . . haha!)

I know that my brake line system may seem a bit robust, or entailed, for what it’s actually accomplishing, but I didn’t want to just go the EZ way out and throw in a couple of runs of Nylaflow and call it a day (I’ll do that for the rest of the nose brake lines!).  Remember, the components making up these lines are literally the smallest you can get in every category: 1/8″ aluminum tubing, -2 fittings and -2 Adel clamps.  We’re talking mere ounces, including the diminutive mini-bulkheads, in weight penalty… I’d seriously guesstimate maybe 2 ounces over using Nylaflow/Nylon brake tubings from the main brake line to the Parking Brake Valve (PBV).

Plus it was fun, I learned a lot, and the tubing reminds me of a German brewery . . . Ah, beer!

Nose brake lines in!

Here’s a shot from the other side.  The half loops in the line are simply that, a service “loop” in case I need to rework the brake line.  Since the majority of it is embedded, I wanted to leave enough exposed that I could whittle down in making new flares, etc, if need be.  The aluminum tubing is softer, and bends quite readily, so there was no torquing or strain on the line in making those seemingly tight bends.

As I’m sure you’ve noted, I placed the Parking Brake Valve near it’s final mounting location to check how it fit into the schema.  So far so good.

Nose brake lines in!

Now, onto how I really spent my time.

When I was brushing up on brake line fittings, tubing, flaring and the like in Tony Bengelis’ books, Firewall Forward, and Tony Bengelis on Engines, I noted that he noted that there seems to be a number of “insignificant” things (my paraphrasing) that we overlook in the build until we get to them.  Probably natural, and perhaps less costly in the long run since far less money is wasted on buying things based on future prognostications.

Tony was speaking mainly about hoses, and how builders tend not to give them care until they’re at the point in the build where they need them, and then they most likely have to get them constructed.  Time not building, and perhaps added costs in getting them shipped faster. IMO, there are quite a few areas in a Long-EZ build where this occurs, ESPECIALLY considering that Long-EZs are both plans built and continue to evolve in major sub-systems design due to the open source type metamorphosis that continues with this aircraft.  A few cases in point from the original plans:  Jack Wilhelmson EZNoseLift, Ken Miller’s forward rudder/brake pedals, Vance Atkinson fuel site gauges and pitch trim actuator system, Waiter’s roll trim system, Davenport’s extended nose, Stephen James “Wortmann” main gear fairing, Sam James’ construction of Gary Hertzler’s wheel pants, Todd Silver’s improved canopy design, the Cozy Girl’s torque tube offsets, Feather Light and Aerocad’s improved strake kits, to name a few,  And that doesn’t even take into account the RAF approved mods, all requiring another set of plans: Ronzc canard and HIgh speed rudders with hidden bullhorns.

My point in all this is that the Long-EZ is unique in that they’re an amazing number of variables that must be dealt within each build, and each variable requires time in research & decision-making to figure out.  I haven’t built an RV, or a Kitfox, or any other kit plane, but conventional wisdom dictates that following the instructions of “Bolt A to B, C to D, and step 15 is complete” is an entirely different construct than what Long-EZ builders contend with.  After reviewing my fellow builders’ websites, I can tell you that each plane is so amazingly unique, that they are all truly one-of-a-kind works of art!

I digress.

This all affected me today in a real way.  As I was trying to “simply” figure out what electrical components would reside in the nose battery compartment, and the configuration, placement, fitting of such components, I was of course referring back to my electrical diagrams.  I pulled out my lighting systems diagram.  It was old, outdated and not representative of the components I have on hand.  I updated it with my chicken scratchings.  Then I referred to my primary electrical system diagram, adding a ton more chicken scratchings and notes to the pre-existing myriad of handwritten notes.  And when I say myriad, I really mean A LOT!

If you’ll note the trend, I had had enough.  I was fed up with working off of old wiring diagrams.  How old?  My primary electrical system diagram was dated Jan 2014… almost 2 years old!  I had to remedy this.  I fired up my CAD program and spent a good 3-4 hours updating four electrical diagrams in my wire book.

In my mind, I think many could claim that clearly the wiring diagram is not an overly tangible thing right now in the build considering I haven’t even finished construction on many major parts of the aircraft.  What updating those diagrams did was give me better clarity for figuring out what was going where, and why.  Again, IMO, with so little space available for the amount of stuff I’m cramming into this bird, combined with the issues that plastic birds are prone to have with those nasty little electrons, not to mention RF monsters just waiting to get nasty in our headsets, I’m really trying to optimize my electrical system as best possible.

The last thought I had on this was when I had finally decided to mount the battery buss on the aft side of Napster vs. in the battery compartment.  After I checked the fit and mocked up the buss and the relay to see where they should go, I spent at least a half an hour figuring out the hardware to use to mount the damn things!  To me, this is the stuff Tony is talking about.  A half hour sorting through screws and bolts and washers just to figure out WHAT I NEED TO ORDER!   . . . amazing!  Again, this is not stuff that comes in that giant crate sitting in your driveway, pre-configured, pre-designed and just waiting for you to mount item A to pre-drilled panel B, with screw C, washers D & E, with nut F.

But I wouldn’t trade it for the world.  Good times!

Oh, btw, in case you were wondering what’s going on with the actual nose build,  I measured out my foam panel requirements for the battery compartment floors & sidewall pieces.  I should be starting on those within the next day or so.

(I also spent a good hour consolidating and organizing my electrical parts containers… also something LONG overdue!)

And hey, thanks for “listening” . . . sometimes ya just gotta ramble!

Rock on Brothers!