Chapter 22/24 – Coming together…

I started out today by doing a bit of electrical system administrivia until I could call GRT Avionics.  I then called them and left a voicemail detailing my tale of woe regarding the AHRS not talking to the HXr EFIS.  Within 15 minutes Mark from GRT called me back and within a minute I had the AHRS online.  It was simply a matter of setting the baud rate to 19200 (which I couldn’t find in the documentation) and it was off to the races from there.

While I had Mark on the phone we also worked through how to set & label some of the analog ports for my specific inputs such as the GIB thigh support fuel sump low fuel alarm. He had to do some digging around but he found the info that allowed me to set all my unique analog port inputs.

Here’s another shot with some slightly different screen views than above.

Upon checking my mail I found that I had received the 4″ USB dongle I ordered to connect the HXr EFIS display to the 4-port USB hub.  The USB hub connects items such as the Radenna SkyRadar ADS-B IN Receiver and by adding a little nub of a USB device also provides Bluetooth capability for the GRT EFIS system.  Specifically, with a small Android tablet the GIB will be able to see essentially the same info on the PFD as I do up front.

I then installed the USB dongle . . . this is the HXr EFIS side

And here is the 4-port USB hub side.  You can see there is not a lot space behind (again, technically “in front of”) the EFIS display unit.

I also received the parts from ACS that I was remiss in ordering in a timely fashion.  With the #2 CAMLOC receptacle in hand I then pressed forward with the pilot thigh support cover CAMLOC locking tabs installation.  Two items worthy of note on these CAMLOC tabs is that, first, I realized I did not have countersunk rivets large enough to mount the CAMLOC receptacles to the tabs…. hmmm?  I quickly determined that a #6 countersunk screw would do the trick so I rounded up some of those (I only had the fancy SS hex drive #6 screws that would work) and some locknuts and got to work.

The second issue was that the left tab would not sit flush with the lower instrument panel cross piece and that it really required some force to get the thigh support cover to seat down in its proper position.  Of course I didn’t notice this until the receptacles were mounted in place and the CAMLOCs were installed tightly.  I fiddled around with it for a bit and realized it just wouldn’t work with the bracket at a 90° angle since it was obvious the angle must be more acute.  I don’t really like bending composite components with heat because things can go south quickly, but I bit the bullet and did just that.  I used a scrap piece of wood to mount the bracket to and then judiciously applied heat and was able to bend the bracket into a more acute angle and . . . Voila! . . . worked like a champ!

Here’s another shot with the thigh support CAMLOC brackets ready to be floxed into place into the fuselage at the base of the instrument panel bulkhead.

Ahhh, this familiar site!  What could it be??  Well, this time around of course it’s the thigh support CAMLOC brackets floxed into place and curing.

While the thigh support CAMLOC brackets cured, I prepped the Trio autopilot pitch servo for removal.  I needed to remove it for a twofold purpose: 1) I needed to repair 2 of its P3 connector pins that were NOT toning out, and 2) I needed to hook it up to the panel-mounted Trio autopilot control head for testing.

I forgot about the cool looking base floxed into place inside the right side of the nose, so I figured I would grab a currently rare shot of no pitch servo mounted on the side wall.

A bit later, after I confirmed the flox had cured, I pulled the weights off of the pilot thigh support cover and checked the fit of the now CAMLOC-secured cover.  Bottom line, as my buddy Dave B. from OZ would say, “It works a treat!”

Here are the left and right CAMLOC receptacle brackets now permanently floxed in place at the base of the instrument panel.

And here’s a shot of both thigh support CAMLOC receptacle brackets.

As I finished wiring up the Trio Pro Pilot autopilot into the instrument panel mockup, I first repaired the 2 errant connector pins on the pitch servo and then connected both servos to the Trio autopilot control head.

I also ginned up a quick little mount for a temporary autopilot disconnect switch just in front of the intercom.  I picked this spot since my actual autopilot disconnect switch is on the control stick.

BTW, the connector you see in the Adel clamp attached to the outside upright of the instrument panel mockup base is the P5 connector, which attaches to the control stick cable connector.

Although I temp-mounted the GNS480 GPS antenna puck last night, I thought I’d get a shot of that and the newly connected Radenna SkyRadar-DX ADS-B IN receiver sitting down low in front of the instrument panel mockup base.  You can see that I zip-tied its own GPS antenna puck to the top of it, this making GPS antenna puck number 5 that is currently connected to this panel mockup!  If you’re curios, here’s the list:

      1—GNS480 GPS Receiver
      2—HXr AHRS
      3—Mini-X EFIS
      4—TruTrak ADI
      5—Radenna SkyRadar-DX ADS-B Receiver

Ok, so here’s the latest shot of the mocked up instrument panel, ready for official power-on test #2 . . . which means that I am really just checking out my Trio autopilot wiring installation.

And here’s the panel with power fired up again.  A quick note that not only did I resolve my AHRS connection issue, but I was able to tweak my GNS480 external annunciator lights and rewire the OAT probe on the MGL clock, so all of my 3 issues from yesterday are resolved.

My last act of the evening, as I was doing some minor configuration inputs on the Trio autopilot, was to personalize that sucker to make it MINE!  [Note the blue GPSS LED light lit up as the Trio AP is talking to the GNS480 GPS receiver…]

Alrighty then my friends, tomorrow I plan to work on both the thigh support cover piece that will wrap around the fuel selector valve to finish off the thigh support install, and also work on finalizing the Dynon intercom wiring connections as much as possible.

 

Chapter 22 – Light it up!

I started off today by cutting 2 small pieces of wood and attaching them to the existing panel mockup base with wood screws.  The lower 3/4″ plywood plate, mounted vertically just below the left-side row of circuit breakers, does double duty in holding up the second horizontal plate, and at 4.5″ in depth mimics the top of the lower LHS side hole in the instrument panel bulkhead, the highest point for running wires from under the left armrest to behind the panel.  In other words, all the wires going to/from the intercom to behind the panel must be run below this plate.

I mounted the second, thinner plate on top of the arm intercom-positioning jut-out at the base of the panel just forward of the row of circuit breakers.  This plate mimics the left armrest console aft of the panel and forward of the control stick. Since I plan on mounting my master switch and both “mag” switches here, I went ahead and mounted my master switch in its approximate position.  In this setup I’m bastardizing the master switch to serve as a power ON/OFF between battery power and main buss feed.

Over 12 hours later here is the panel –with about as many of the wiring cross connections completed as possible– ready to be fired up for the first time.

After I double checked all the connections, I set the battery in place and attached the leads.  My battery was at 13.8 volts, which gave me a good bit of time to test out the panel.

I took this shot a fair while later after I applied power to the panel.  I had left the GNS480 off for quite a while since it’s a bit of a power hog as I initially worked on configuring the GRT boxes.

Currently, I have 3 main issues I need to address, one major, 2 minor:

  1. My HXr won’t recognize the AHRS unit.  I’ve double checked all the connections, power, RS232 etc.  I’m stumped so tomorrow I’ll contact GRT.
  2. Three of my powered GNS480 external annunciator lights (Korry) lit up even before the unit was powered on.  Clearly I’ll need to figure this out.
  3. The OAT probe is inop on my nifty little MGL clock…. and has never worked.  I’ll contact MGL tomorrow as well.

Barring the usual snags, I’m super happy with the panel.  Tomorrow I’ll probably get back into the shop for at least a bit, but I do want to get the AHRS issue resolved.

 

Chapter 22 – Fun’s over…back to work!

I started out today by re-drilling the holes in the pilot seat thigh support CAMLOC receptacle mounting tabs where I had added 2 plies of BID (no pic).  I was ready to install the mounting tabs with CAMLOCs in place, but realized it wasn’t the best idea with only one CAMLOC receptacle on hand.  Obviously I need to order one, so I added it to the small ACS order that I’m compiling.

I then started reviewing what I had left to finish my panel mockup.  With the 2 AG6 warning annunciators, I’ve ridded my panel of all extraneous warning lights save 2 (one red, one green) that specifically are allowed on my panel for the JBWilco Gear & Canopy warning system.  Interestingly, out of all the LED panel assemblies I have in stock, I did not have a green light.  I had the nice Cadillac of LED panel lights that my friend Eric at Perihelion Designs peddles, of which I have a Red & Amber version of, but I don’t have a green.  I went to Eric’s site, but alas I didn’t see them on there (I’m sure even if I missed it he would sell me one).  Interestingly I found Eric’s nice LED assembly on Stein’s site… ok, I had an identified source of supply for my green light!  Check.

So I marked up the panel using the sexy red LED panel light assembly I had on hand … Uh, Houston we have a problem, and it’s space…. not outer space, but space for the fancy robust flange included with Eric’s LED light assemblies.  They could easily fit, but at almost 0.45″ in diameter, they do take up some real estate!

In my quest for a green LED, I did run across Jack Wilhelmson’s Landing Brake switch plate that included a red and green LED… bingo!  Of course I had to rid the LEDs of their soldered component webbed matrix bondage stuff, but after I whittled them all down I ended up with a green and red LED light, albeit with short, solder-encrusted stubby leads. Knowing how these lights look in a panel, plus the diminutive plastic “grommets” used to hold them in the panel, I decided to go with these.  Plus, I really like repurposing stuff that might otherwise just end up in an old parts bin!

I checked Jack’s included landing brake wiring schematic (I’m too lazy to attempt deciphering the resistor color band codes) to determine that he did in fact use a 470 ohm resistor . . . perfect!  Thus, I reused that as well in my evil plan here.  I soldered Jack’s repurposed resistor to Jack’s repurposed green LED.  I then added the appropriate color-coded 22 AWG wire leads by soldering those into place as well.

I then soldered one of my benchstock 470 ohm resistors to the red LED, and also soldered on the appropriate color 22 AWG leads.

While I had the soldering iron fired up & soldering kit ready to go, I knocked out a quick soldering task that I had open on the books: I ridded myself of a big, bulky, heavy and unnecessary deutsch connector that resided on the ground wire to my ElectroAir EIS Controller.   To be clear, in my latest phone call with the ElectroAir bubbas, I specifically asked if this would present any issue: obviously they stated no, the connector was simply in place for ease of installation.  In my case, it would not make installation easier . . .

So, I unceremoniously lopped off each side of the deutsch connector.

I stripped the wires and prepped them for splicing (notice the longer 3-strand “tail” on the top wire).

I then joined the wire together, wrapped the lead (“tail”) around the joined wire bundles to secure the wires together tightly, and then soldered the whole affair.

I then added a piece of heat shrink to finish out my ElectroAir EIS Controller ground wire streamlining . . . Voila!  Aaah, much better.

Unlike my cleaned up ground wire above, my next task was to add complexity to the instrument panel mockup base by creating a mounting frame for the Triparagon, since it’s such an integral part (read: epicenter) to the electrical and avionics systems.

I added a top frame assembly that mimics the F28 bulkhead, including a mounting tab for the Triparagon.  On the forward bottom side I simply screwed a small block of wood in place.  I then slathered on a couple quick coats of white primer to make it all match and let it cure while I was drilling and cutting out mounting holes in the panel mockup.

Quite a few hours later, I brought the dry instrument panel mockup base upstairs, since it was ready to be pressed into service.

I then mounted the Triparagon in place.

Here’s an aft/side shot of the Triparagon.

I then mounted the ELT control head (bottom component on center strut), switches and circuit breakers into the panel mockup.  Right as I was getting ready to mount the panel into the base, I realized I had left out the diminutive Push-to-Test button for the top row Korry lights [I haven’t even address the actual wiring for the GNS480 external Korry light annunciators yet].  So after figuring out it’s exact location, I hauled the panel down to the shop and quickly drilled the mounting hole (with some requisite panel-thinning immediately behind it so it would fit depth-wise).  I then mounted the panel onto the base front uprights.

I then mounted the compass card, GRT Mini-X EFIS, TruTrak ADI, and MGL clock.

I didn’t realize it until much later, but for some reason I inexplicably mounted the MGL clock on the front (outside) of panel vs from the back.  After looking at it for a bit, I realized that I really like it this way.  I will try mounting in the traditional manner and assess, but I am really liking how it looks mounted on the front side of the panel.

I then went offline for a bit panel-wise and had to dig into the Garmin GNS480 unit manual for the details on installing the backplate onto the mounting tube (bracket).  My GNS480 came with the tube and an entire new mounting kit replete with a myriad of tiny screws, washers, etc. to assemble the backplate, D-Sub connectors and antenna connectors.

Once I got the backplate installed onto the mounting tube, I then mounted the tube into the panel mockup.

I then spent the next 2+ hours installing the remaining panel components: GNS480, GRT HXr EFIS, and Korry indicator lights.

I also mounted the 2 LED warning lights that I soldered up previously.  Here’s a shot of just the instrument panel . . . closer to what you would actually see in the plane.

And an even closer shot of the panel components.

Over the next few weeks/months I’ll do all the wiring and cross connects for the panel & Triparagon.  I would like to get it wired to the point that in the next 7-10 days I can fire it up and check out the HXr to ensure all is good with it.  As for now, I’m done with my major digression and will get back to working on the pilot seat area & left pilot armrest console in my continuing quest to finish off the lion’s share of interior cockpit component installs and configuration.  This will of course facilitate closing up the top of the nose and getting the canopy installed.

 

Chapter 22/24 – Ribs are done!

Today I started by . . . yep, adding the last bit of dry micro to the last 2-3″ middle area of each micro cap on the pilot thigh support ribs.  These things looked like twins with their shiny micro midsection glaring away, untouched and unspoiled by the thigh support top plate.  So, after sanding the middle micro areas on each each rib top dull, I then whipped up another round of dry micro and applied it.  All in all, I seriously only needed 1/8″ to 3/16″ more micro here, but man this is one of those things in the build that wants to be stubborn!

As the dry micro cured atop my ribs, I got to work finalizing the instrument cutouts for the mockup instrument panel that I’m constructing.  This panel will not only allow me to test instrument, avionic & component placement –and FIT!– but also put them all in their near-final position to allow me to wire them up.

After a few hours I finally saw what I’ve been looking for the last couple of days: no flat or untouched micro atop both my thigh support ribs… yeah!  I started cleaning them up by literally shaving the sides of the overhanging micro like you would a big block of cheese.

Once I got the sides close, I then switched to a sanding block to finalize the sanding of the added micro top.  I may add one more ply of BID just in the center areas for strength, but primarily to keep these from getting chipped away over the years.  Regardless, this part is DONE!

I then tested out the ELT location using the mounting bracket that was included in the ACK E-04 Retrofit kit (read: “starter” kit, IMO) that I just received today [perfect timing!]. The kit also included the panel mounted control head, so I’ll be mounting that in the mockup panel as well.

I also received the Eberhard latch that I’ll be using for the nose hatch.  This is close to the one I saw on Rick Hall’s Cozy IV at Rough River.  I added the wire clamp nut assembly making it pretty much ready for install [Note: I might take the drill to it and drill a few lightening holes since this thing is a bit heavy for its size].  Below the latch is in the hatch closed & locked position.

Here’s the Eberhard nose hatch latch in the hatch open position.

I also cut some uprights for the base of the mockup instrument panel.  I’m making this panel mounting stand a bit taller than just the main instrument panel area to allow for mounting the Triparagon behind the panel, since it plays such a key role in the panel instruments’ wire cross connections.  I went to dinner with my buddy Rob tonight, so before I left I spent about 15 min. painting this base with some white primer to hide all the unsightly water marks and wear on these “trash” pieces of wood that I used.

Tomorrow I plan on continuing with the seemingly unending saga of getting the pilot thigh support top plate installed.  My main task is to get some tabs glassed onto the lower aft side of the instrument panel to allow mounting 2 CAMLOC fasteners that will secure the front side of the seat support plate in place.  I’ll be working on the base for the ELT mounting bracket as well, shaping the fuselage floor to permanently install nutplates to secure the ELT bracket.

 

Chapter 22/24 – Pile the weight on!

I started out today spending well over an hour doing some research, answering questions, and providing info to Bob Nuckolls, et al. in response to a question I asked on the Aeroelectric Connection forum.  The question I asked was on how to create or modify a 4-into-1 video splitter to channel the micro cameras I’ll have on ship for viewing the back seat left & right fuel site gages, top side looking aft (at engine/prop), and bottom side looking aft (at engine/prop).  This device will then feed a GRT-integrated USB video module that will allow me view the video feeds in a small sub-window on my EFIS either auto- cycling through (that was one of my questions how) or by manual select.

I then got to work on round 2 of the pilot seat thigh support rib tops.  I took the profile of the bottom of the thigh support cover’s underside contour and then cut a cardboard template out so I had a good 1″ wide rib top edge profile to then cut the 1-ply prepregged BID tapes for each side of each rib.

Below you can see I’ve got the 1-ply layups + peel ply on the left rib (bottom) and on the side of the right rib, with the plastic still yet to be pulled.  I know I’ll have to add around 3/16″ -1/4″ more dry micro on top of the existing micro, so I laid up these edge plies of BID so they stuck up above the existing micro a bit.

Once the layups cured for about an hour, I then trimmed them a bit, cleaned them up and then added another round of micro.  I then of course had to add massive amounts of weight to the thigh support cover plate . . . Why?  Because I could …. (grin)

During my shop shenanigans I heard a delivery truck stop by.  A little while later I did in fact find a couple packages on my doorstep.  The first one was from Airflow Performance and had the 90° and 85° air intake elbows that I ordered, with the associated gaskets.

These elbows make up the physical mount and air intake for the air coming out the of Silver Hawk fuel injection servo into the Superior cold air plenum.  In the pic below, the nose of the aircraft would be to the left, prop to the right.  Since all the cold air induction plenums are built for forward facing engines, to incorporate one I had to get my air turned around.

To be clear, this isn’t something I did willy-nilly, although I know a number of Cozy builder/ drivers have done it with reportedly good success.  I conferred with Kevin Murray at Sky Dynamics, my IOX-340S engine builder, Tom Schweitz, and just within the last week I had a good discussion regarding getting this air turned around with Pete at Precision Airmotive, the maker of the Silver Hawk fuel injection system.

I’ve also been discussing this quite a bit with Chris Seats, a fellow Long-EZ builder.  While Chris is not using the Silver Hawk FI (he’s using the EFII system) he is using the Superior cold air induction plenum, so he has to turn the air around as well.  Chris is constructing his own air intake duct out of Carbon Fiber, but was curious about the weight of these combined elbows… which is 1.7 lbs. total.

The other package contained the 2″ high “EXPERIMENTAL” vinyl label that will eventually go on the inside bottom frame of the canopy rail.  It’s kind of hard to tell, but the lettering is simple black letters with a white shadow.  If you’re wondering why I bought this now, remember I had 2 weeks to do nothing but research and figure some of the smaller issues out… so while I had the opportunity I played around with my vinyl decal styles and pulled the trigger on a couple orders.

While my second round of micro on the thigh support ribs cured, I then spent a good amount of time determining the exact location of my GRT HXr EFIS on my panel mock-up blank.  I then cut the PFD mounting hole in the panel and test fit the HXr.

After a gazillion tweaks on the dimensions, trying to ensure every component gets a spot at the (panel) table, I then cut out the mounting hole for the Garmin GNS480 GPS unit that you see “installed” here.

Here’s a shot of the GRT HXr EFIS and GNS480 mounting tube behind the panel.

And another shot of the GNS480 mounting tube.  I’ll have to play around with getting the tube mounted in this panel mock-up blank, since it is a different configuration than how it will actually get mounted in the real panel.

I then spent another couple of hours dialing in the remaining panel avionics, instruments and components.  Since it was too late to do another inevitable round of micro, I left the weights in place on the thigh support cover and hit the rack.  Tomorrow I’ll continue with my primary push to get the pilot’s seat and fuel valve cover completed so I can move on to the left armrest (which, in turn, when finished will allow me to do a final mount of the GIB heating & air ducts).

 

Chapter 23 – Rabbit holes

Today I had a myriad of personal things to take care of early on.  When I got back to the build I really wanted to figure out some issues that I had run across when loading up the GIB headrest with components.

I had some questions for ElectroAir on their Electronic Ignition, and when I tried to call they were already closed.  When I checked out their site’s FAQ section, I noted their new requirement for mounting the MAP sensor: they now want it mounted on the cold side of the firewall, where before they stated to mount it on the hot side.  This new placement is in line with how GRT states their MAP sensor should be mounted, but throws a wrench in the works as far as how I have my MAP system configured…. so back to the drawing board.  Literally.

I didn’t want to just write a note and deal with this later, since the information I was collecting was all right in front of me.  I spent a few hours researching configuration options, figuring out fittings, and the physical install on each side of the firewall.  The end result was a couple of respective orders for very specific fittings (restrictor & barb), and an entirely new look of my MAP system by the time I was done.  In fact, below is a shot showing my MAP system about a year ago (top) and what it looks like now (bottom diagram).

In addition, although I don’t have a pic for this, I also spent a good hour updating my firewall components and pass-thru diagram, which has changed significantly from a year ago as well.

In prep for Rough River this year, I sent a note to Mike Beasley, Long-EZ builder extraordinaire, asking if he could bring his O-320 engine baffle templates he created a few years ago.  He had said I could get a copy, so I figured now was a good time.  Mike actually had soft copies of his templates, sent me those and I immediately went down to Staples and had them printed off.

Here’s a closer shot of Mike’s engine baffle templates.

While I was at it, I loaded up pg A14 of the plans on my thumb drive to have it printed as well.  I need to dial in and refine the shape of the rather rough-cut ribs that I have in my Strake Leading Edge kit from Feather Light.

I have to say all the copies came out about as perfect as could be from what I can tell (there are tick marks on pg. A14 and it did print out spot on).  With my manifold pressure system issues put to bed, I can now move on with the build and get back to my internal cockpit configuration tasks.

 

 

 

Chapter 22 – No turning back… now!

Haha!

I didn’t get ANY actual building done on the plane today!  Why?  Well today I got a nice delivery from the UPS bubbas . . . you gotta love people who bring you airplane parts!

Hmmm? . . . a big box from GRT Avionics.  This can’t be anything but good!

And what do we have here, 3 smaller boxes inside the big box.

Small box #1 revealed HXr EFIS accessories: GADAHRS, magnetometer, GPS antenna puck, OAT probe, and wiring harnesses.

I had already located my preprinted label stash and as each item came out of the box it got labeled with it’s 2-digit component ID.  I also wanted to check the fit of the GADAHRS on the top cross mounting shelf of the Triparagon: perfect fit!

The bigger of the 3 boxes was the GRT HXr EFIS itself. I bought the smallest HXr EFIS GRT sells –the 8.4″ model– since I wanted to conserve as much panel space as I could.  I figured it would fit well and still have exactly the same features as the large 10.4″ and 12.1″ models . . . actually more, since those models don’t have the optional touchscreen feature that I ordered on this unit!

You can see the top layer of the box contained more wiring harnesses, a thumb drive, and a display unit cross connect ethernet cable (that I won’t use since the Mini-X does not have an ethernet port… the displays will talk to each other via an RS232 serial pair).

And then I pulled out the centerpiece of my instrument panel: the GRT Avionics 8.4″ Touchscreen EFIS.  When I started this EFIS journey years ago, I’d never imagine that the unit I’d get was even more capable than what I was asking for.  I have to say that I’m extremely happy with the configuration, outlay and capability of my panel and avionics!

Here’s a shot showing the depth of the HXr EFIS.

And the back panel.

This shot gives you an idea of the actual size of the unit.  It’s not like I have gorilla paws, so this EFIS is a perfect size for a Long-EZ panel (in my opinion).

I’ll reflect back on how it is to plan something for literally years and then finally have it come to fruition.  This is my personal money shot right here.  Finally… my HXr PFD & the Mini-X MFD, together . . . where they belong!

I then opened up box #3, which contained all the wiring harnesses and engine sensors for the GRT EIS4000 Engine Information (management) System.  Since I needed a different MAP sensor that doesn’t come in any of the EIS4000 packages, I ended up getting the basic package and then just adding a couple higher quality sensors to the lineup.

And here’s the very capable EIS4000 control unit.  A lot of builders simply place this in their panel and call it a day, and it will work well that way.  But to spice things up a bit all you need is one little 22 AWG wire to port all that info via serial data into the HXr & Mini-X and you can see all the engine data in beautiful, colorful graphical representation.

I can’t even begin to relay how many phone calls that I fielded today.  So besides inventorying the new orders and crosschecking interfaces with components I already have on hand, I finished out the evening by “simply” figuring out the configuration of my GIB headrest (aka “component storage facility”) which will house the following (top down, CW):

  • Hobbs Meter
  • EIS4000 Control Unit
  • B&C SD-8 Backup Alternator Capacitor
  • B&C SD-8 Backup Alternator Voltage Regulator
  • B&C SD-8 Backup Alternator Self-Excitation Bridge Rectifier
  • Princeton fuel level control unit – Left Tank
  • ElectroAir EIS (Electronic Ignition System) Controller
  • Princeton fuel level control unit – Right Tank

(That’s all . . . at least for NOW!)

Oh, and let’s not forget the other item I also received in the mail today: my diminutive (cool in itself) MakerPlane AMX-2A Audio Mixer that allows me to take all my GNS480 system and NAV reporting messages, combine those with Trio AP audio reporting and CO sensor audio alarm, etc. and run it all seamlessly into my Dynon Intercom.  It has 10 channels so it can handle more than enough devices that I think I’ll ever throw at it.  And, as you can see, it’s literally the size of a 25-pin D-Sub connector backshell  [because it is one!].

Tomorrow I plan on getting back onto the build.  I’ll be honest though, as I start prepping for RR, and my 2 weeks of visiting friends in NC and VA, time will be in short supply.

 

 

Chapter 22 – Look Ma… I’m on TV!

I had planned for this past week to be a much more productive effort on the plane build, and while I did get some significant stuff done, it was not all build related.

September is the month that I have to get an annual state mechanical safety inspection done on my truck.  My truck has been limping along like a trooper as I’ve literally been soaking every mile out of these tires, going a few thousand miles over the oil change interval, etc. due primarily to my all-consuming focus on this build.  Well, it was time to take a day or two to make my truck the pretty penny, so that it not only passes inspection, but lasts a few more years as well as I recover from this rather expensive plane build endeavor I’ve undertaken.  That pretty much wiped out Wednesday & yesterday, but I was able to take the truck to the auto hobby shop on base and do an oil/filter change, new front brake pads, etc.  Sunday will be new tires and that will be the lion’s share of my truck upkeep for a bit.

Today I had a whole list of shop build tasks to undertake, but that all went sideways with the myriad of phone calls I had –most plane build related– trying to nail down the purchase of some Bi-Lok reducer fittings for my hell hole brake line cross connects, and working with GRT on finalizing the purchase order on my GRT 8.4 HXr EFIS and EIS4000 engine management system.  Both those efforts alone entailed a myriad of phone calls and some decisions I had to make on my side (read: a bit of research).

Since I had planned on hanging out with an old Air Force buddy of mine tonight, I knew it would be a short build day.  So after talking with Jeff at GRT about their optional USB EFIS video input, I decided to explore that capability a bit more before heading out to dinner (i.e. no shop work).

Quite a while ago I bought a very small video camera off Amazon for around $12 to test out.  My specific idea was that with all the challenges I’ve heard from Long-EZ flyers about the real world ability of turning their head around and viewing the fuel site gauges in the back seat area, why not exploit GRT’s video input capability by using a couple of mini-video cameras to simply view the site gauge fuel levels (I do have Nick Ugolini’s fuel probes as well that feed the EFIS fuel tank quantities).

For an ounce or two tops in weight I can simply take a quick glance at a video feed in an inset on my EFIS and confirm the fuel site gauge level readings.

In addition, with a camera posted top CL of the pilot headrest looking aft, in one quick glance I can check the status of my top engine cowling and prop.  Moreover, I can check the status of the GIB and make sure they’re doing ok.

Finally, since I found a 4-into-1 video feed unit online, I plan on attaching the fourth camera just aft of the front gear T-foot that hangs down in the airstream on the bottom CL of the fuselage.  The camera will also be facing rearward to allow me to check on the health of the lower fuselage, landing brake, landing gear, lower cowling and prop.  Since the air just aft of the nose gear T-foot will already be a bit turbulent, the mounted video camera’s tiny footprint shouldn’t increase drag by any significant degree.

I figured out the wiring on the camera and dissected it a bit to see how I could use much thinner/lighter 24 AWG aircraft wiring to extend the leads vs using big, bulky, heavier audiovisual RCA jacks & cable leads to connect the cameras up to the avionics bay.

I of course wanted to see how well the video camera worked, so I connected it up to my dining room TV, added power to the tiny camera and Voila!  As you can see the picture is definitely good enough to see any details required for my basic needs on the airplane.

With my nascent plan coming together for these incredibly light, tiny cameras, I can incorporate their installation into the build process as I move forward.  There of course will be a bit of research and engineering to get exactly what I want as far as the control of what camera shows up on EFIS video feed, but beyond that I’m pretty much set.

Ok, another rabbit trail marked as recon’ed!

Tomorrow, Chris Seats will be coming over later in the afternoon to pick up my spare canopy that I threw up for sale on the canard group FaceBook page, and to check out my build progress.  That means some requisite shop cleaning (yep, it’s still a mess!) and then after Chris leaves I’ll actually get back to building!

 

 

Chapter 22 – Heat System Overview

Today I started out by spending a couple of hours updating wiring system grounds and my comm component interconnections in some of my wiring diagrams.  I also figured out my Audio Mixer requirement and updated that accordingly.

I then went down to the shop and spent a couple of hours cleaning and organizing it.

Then, since my next task required the dismantling of the mocked up heat exchanger and duct system, I decided to knock out the next oil heat system video that I had promised to do a while back . . . so here it is:

 
Tomorrow I’ll break down the oil heat & duct system and start working on it again.  I’m not that far out from mounting it into the backseat area permanently.

 

Chaps 13/17/21/22/25 – Firing it up!

And when I say “Fire,” I’m not kidding . . . read on below!

Today I started out doing some planning and inventorying for my fuel system.  Since I’m going to make my new work demarcation line at the pilot’s seat bulkhead, going forward, then I needed to figure out my fuel system in real terms, not just in my head.  I drew out the fuel system on a white board and then did an inventory to see what I had on hand and to see what I needed to order.  I was fairly pleased that I had the majority of stuff I needed on hand, but will need to order about $35 in fittings from ACS.

I also did some research on the exact installation requirements for each fuel system component.  For example, on the Andair fuel valve I could clearly see that the big red selector handle needed to come off to install it, but I hadn’t even truly read the install manual until today to find out how to remove the handle, and install the unit.  I also had some questions on the FT-60 Red Cube fuel flow sensor that I eventually got answered on the VAF site.  In addition, I wanted to double check some info on the fuel pump.

After a few hours I was happy with my progress on the fuel system and was satisfied that I actually knew the direction I was headed with that system once again.

I then my sights back onto the Atkinson pitch trim system.  Having received my reamers via UPS this AM, I was ready to drill and ream a nice round 1/4″ hole in the elevator tube to mount the control arm of the pitch trim actuator.

First, I spent a good 45 min dialing in the new configuration and physical mounting of the pitch trim actuator by redrilling the 2 mounting holes in the mounting bracket.  Not only was I moving the entire unit aft a hair, I was also rotating the front of bracket down a bit more while the aft side dropped down some as well, but not as much as the front.

Once I got the pitch trim actuator assembly newly aligned, and the mounting hole in the elevator tube was ready to be drilled, I set up the control system within the plan’s specs with the elevators at neutral and the control stick at ailerons level, which is actually about a 5° stick grip lean to the left — again, as per plans.  I then drilled out the hole in the elevator tube and mounted the control arm of the pitch trim actuator.

Once I tested the newly realigned pitch trim system, the up trim worked fine but the down trim didn’t work at all.  Apparently, if you’re prone to moments of just being dumb, then you can expect issues like this!  Apparently, in my haste to get this pitch trim actuator in this bird, I forgot to double check its current position.  Since the actuator arm was all the way in, then when I threw the switch for it to push the elevators up, it did so with no issue. But then when I went the other way, well, by the time the actuator throw ended the elevators were merely back at level . . . and didn’t go down below the level line at all.

Another issue I had was just a little battery fire, or so I thought –after I removed the actuator to set it at its midpoint position– as I was coming around the nose and had moved the actuator power wires.  Well, as I rounded the nose I could see a bit of fire right on top of the battery.  Not sure what was actually burning, I yanked the wires off the battery and kicked it across the floor so if it decided to do something violent I had the fuselage between me and it.

Well, the fire went out immediately, but there was a good bit of smoke.  Apparently one of my patch cords shorted out and literally blew apart and started burning.  It’s interesting that none of the mil spec wires had any issues, but a couple of the cheaper leads were destroyed.  A few minutes later I felt the battery to see if it was warm, and it wasn’t.  I then checked voltage on it and it was a bit low at 12.59 volts.  But then again, I haven’t charged it in a few weeks and I have been using it a lot.  An exciting little sideshow to be certain, but with that out of the way, I got back to the task at hand.

After about 10 minutes of having the garage open and a fan turned on to clear out the smoke and smell from the burning battery wires, I went to work to fix the actuator configuration by simply taking the actuator out of the nose and extending it until it was half out (1.5″ out, with a 3″ total extension).  I then remounted it, verified and reset the control system to specs, and the drilled the new hole.  When I tested it the second time around it worked like a champ (see video below).

With the pitch trim actuator install taken care of for the most part, I then turned my sights back onto getting some of these painted parts knocked out.  I wet sanded the tool box lid lightly with 500 grit sandpaper, then 1000 grit and finally 1200 grit.

As I buffed out the tool box lid I was also uploading the lengthy video above.  It took a little over an hour total to buff out the tool box lid by hand.

Again, after the Ultimate cutting compound application, I then wrapped up the tool box lid by hitting it with 3 rounds of Meguiar’s Ultimate Polish.

I then set it on top of the tool box body.

Finally, my last task of the evening was to wet sand & Simple Green wash the GPS antenna cover.

After I prepped it for more paint, I hit with 3 coats of white primer/paint to cure overnight. This antenna cover will not be a gloss color, but rather either semi-gloss or even flat.

I’m heading into the weekend tomorrow and have plans tomorrow afternoon on, but I will continue to try at get all the nose components installed –including the now prerequisite pilot cockpit area– to allow me to build the nose top.