Chapter 21/22/23 – Configuring firewall

Today was all about getting as much of a jump as possible on the firewall configuration to get that stuff knocked out early.  I did take about half an hour to clean up all the rough edges on the wheel pants’ tire hole reinforcement layups that I did the other day, and then cut, shaped and sanded the bigger layups I did on the back of each wheel pant tire opening.

After reviewing some info on installing NPT fittings I felt I should do my due diligence and check the torque on the 45° AN6 fitting exiting the FT-60 Red Cube fuel flow meter.  It was tight, but I thought it could be tighter.  However, if you’ve seen the install manual there is explicit warnings not to over tighten a fitting on account the transducer’s case might actually crack.  In the AFP-30 Air Data Computer install manual there’s some literature on the FT-60 that states to torque the fittings to 25 ft-lbs.  Since I had a box wrench adapter on a short extension mounted to my torque wrench, I dialed the torque down to 23.5 ft-lbs to ensure I didn’t crack the FT-60 case.  Surprisingly, I was able to get one more entire revolution out of the 45° AN6 fitting… with how much pressure I had to exert to get to that 23.5 ft-lbs (again, remember I was using an protruding box wrench adapter on a short extension… both serving to add a mechanical torque advantage), I’m surprised people go further than that to crack these darn things!

Once I got the aft fitting on the FT-60 squared away, I then did some minor tweaking of the fuel filter and lines to get the filter flat again the front face of the firewall.  I then marked the position of the Adel clamp hole and the fuel line exit point on the firewall.  From inside the hell hole I drilled small holes out using my right angle drill.  I then drilled from the aft firewall side coming back into the hell hole.  You can see the drill bit in the pic below peaking through the firewall and aligned with the fuel line fitting.

Here’s a shot from the firewall side of my initial 2 holes through the firewall for mounting hell hole and firewall assemblies and pass-thrus.

I then took a #10 screw and Dremelled the head of it to create indentions for flox to better grip it.

After drilling out the fuel filter clamp screw hole and then counter sinking the hole, I then floxed the fuel filter Adel clamp mounting screw into place in the hole.  After it cures I’ll layup a small ply of glass over it.

I then took a fair amount of time to figure out exactly where to place the Electroair electronic ignition coil unit on the upper firewall.  I marked off a 1″ Demarcation Zone around the edge of the firewall to ensure I had space for both laying up the fillet glass to the upper cowling mounting overhang, plus room enough to run 1/4″ fuel vent lines as well.  I also needed to stay as far left as possible to give myself room to get the oil filter out for oil changes.

I even called Electroair and conferred with Denny on the location and orientation of the coil unit.  I played around with placing it just aft of where the CS Spar crosses in front of the firewall in the midpoint area of the firewall, and while there’s enough space in that area the spark plug wires would have funky runs to get to the spark plugs.  So, in the end I decided it had to go on the upper firewall, but at an angle.  It sits about 1/4″ above the SD-8 alternator and does very slightly impinge on the Demarcation Zone.

Here’s a closer shot of the mounting location of the Electroair EI coil pack.

I then got busy making four K1000-4 nutplate assemblies for the AN4 bolts that would be used in mounting the Electroair EI coil pack.  I cut and sanded the phenolic pieces and then riveted the nutplates to the front side of the assemblies.

Here’s an aft view of the Electroair EI coil pack K1000-4 nutplate assemblies.

Using the coil pack as a template to keep the AN4 bolts in their exact mounting configuration, I then floxed the 4 nutplate assemblies to the front of the upper firewall.

I then focused on installing the B&C Firewall/Engine ground stud and forest of tabs inside the hell hole [the usual configuration for the firewall/engine ground stud and forest of tabs is to have a forest of tabs on each side of the firewall.  However, since I only have two items that require ground on the hot side of the firewall, I forewent installing the forest of tabs on the aft side of the firewall].  Although I didn’t get a pic of it, the engine ground strap is temporarily secured on the engine side where I plan to mount it permanently, so the length I ordered for the braided engine ground strap is spot on.

On the hell hole side of the forest of tabs, I then installed the big yellow ground cable that runs the length of the firewall to the negative ground post on the battery.

I then spent the next hour or so drilling and mounting the big yellow power cable that runs from the starter contactor in the nose battery compartment to the starter through a stainless steel firewall pass-thru.  Inboard of the starter cable, I then drilled and mounted a Blue Sea connector for the Alternator’s B-lead that also heads up to the nose battery compartment.

Although this pic is a bit fuzzy, here is a final view of the firewall configuration tasks that I completed today.  From the upper left hand corner you can see a hole drilled for the Oil Heat oil return line to the engine oil sump.  Slightly lower and to the right of that is the main fuel line that feeds the engine driven fuel pump.  Towards the middle is the #10 (3/16″) screw that I floxed into the hell hole as a mounting stud for the fuel filter’s Adel clamp. Then of course is the electrical firewall pass-thru package, starting from the left with the Blue Sea fitting for the Alternator’s B-Lead, a stainless steel firewall pass-thru with the starter power cable running through it, and then the engine grounding strap that connects to the the firewall ground stud that is opposite the forest of tabs inside the hell hole.

In the pic below I added in the Alternator’s B-Lead which will be paired together with the big yellow starter cable as they both exit the engine compartment via the firewall.

Here’s a wide-angle shot of the major engine component electronics, with the big yellow power cable of the starter, the Alternator’s white B-Lead, and the connected engine grounding strap connected to the firewall ground bolt.

Here’s bit closer shot of the starter and alternator power leads.  Note that the Alternator’s B-Lead is terminated on the Alternator side but not yet at the Blue Sea firewall pass-thru. Also note that the starter lead cable is not terminated yet, and won’t be until I get the Fiberfrax and 6061 aluminum sheet affixed to the firewall.

Here’s the hell hole view of all my firewall-based shenanigans. Note that the fuel filter mounting screw is visible in-between the 2 yellow zip ties.

Here’s a little broader view specifically showing the Adel clamp that secures the pair of big yellow power cables.

Tomorrow I’ll continue my firewall configuring tasks.  I should receive some more fittings, so I’ll most likely mount some of those while I’m at it.

 

Chapter 23 – Engine mounted!

My goal today was to get the engine mounted.  Having the engine mounted for a bit will again allow me to figure out firewall component placement, firewall pass-thrus, the engine compartment hose requirements, firewall/engine electrical wiring requirements, upper cowling fitting (specifically for canopy/D-Deck angle), initial baffling requirements, lower cowling fit and air intake (fuel injection servo & RAM air) configuration.  Then I’ll remove the engine and mount it to an engine stand.

Since A) I needed to remove the engine mount from the engine to get the fuel pump OUT fitting installed, and B) do a final clean and painting of the engine mount, I decided since that since the engine mount was secured in place for the moment that I would trim down 3 of the 4 engine mount stubs to allow for clearance of the firewall face’s Fiberfrax and 6061 aluminum sheet covering.  About an 1/8″ at most getting trimmed off any of the stubs… with the top left already short enough for clearance.

I cut and placed a box that I had just received the second shipment of hoses and hose end fittings from Summit Racing (pretty much finalizing all my hose/fittings orders) over the engine mount/accessory case to protect all of it from sparks and metal debris.

Here’s a closeup of the right side engine mount stubs that needed just a hair trimmed off the front side.

I then spent about half an hour trimming them all up.

Here the right side stubs are trimmed up and filed smooth.

On my errands yesterday I picked up some hardware and some Automotive & industrial strength fast-drying White Rustoleum paint.  I spent a good 30 minutes sanding down the engine mount surfaces with 220 grit sandpaper.  Then I filed off a couple very small weld spatters that I missed before, then washed in hot water and Simple Green.  I then let it air dry.

While the engine mount air dried I spent a good 3-4 minutes shaking the can to mix up the new paint… in painting, preparation is everything, right?!  I then started spraying.  It looked good and sprayed like normal spray paint, but then about 5 minutes into painting the bottom side of the engine mount… apparently my normal spray paint decided it wanted to be a can of textured spray paint.  Within a matter of seconds I had the bottom, bottom right corner and right side of the engine mount peppered with what looked like textured, speckled paint.

Needless to say I was quite pissed.  My saving grace was that this was fast drying paint, so after about 5 minutes I felt a spot and it was what I considered in it’s green state. Another minute more and I was able to rub down the surface with a paper towel with a decent bit of force to remove the spackles of paint over nearly a third of my engine mount. That didn’t leave it feeling the smoothest, but at least the speckles were nearly completely gone. Apparently a glob of paint or something got caught in the sprayer head…. which I cleared out.  And a number of test sprays in the air to be certain, I continued on painting the engine mount.

As I waited the requisite 15 minutes for the fast drying paint on the engine mount to dry, I then preheated my kitchen oven to 175° F.  I then popped the fairly dry engine mount into the oven and baked it for 30 minutes.  My goal here on the engine mount paint is of course to have as nice as paint as possible in a reasonable amount of time, but, moreover, I want the engine mount protected against corrosion and for it to be visually inspectable for cracks (thus why no powder coating).

As the painted engine mount baked upstairs, I got to work on the engine mounted mechanical fuel pump.  I took some BEFORE pics from both the right and left sides…

I then mounted the OUT side fitting on the fuel pump, which is a 90° steel fitting that also includes a 1/8″ NPT port straight out for installing a 45° reducer fitting for the fuel pressure sensor line (on the left in pics below).  I also mocked up an AN6 90° hose end fitting (blue & red) to test out the angle for how the fuel feed to the fuel injection servo would run, and an AN4 90° hose end fitting (silver & red) for the fuel pressure sensor hose.  The aluminum AN6 hose end fitting is just to test the angle.  After I verified the angle was the best possible solution I pulled the trigger on a steel AN6 90° hose end fitting from Summit Racing (as well as a 90° 1/8″ NPT to AN3-3/16″ MAP port fitting).

I then installed the fuel pump fuel line feed IN fitting on the right side (as oriented in right pic below).

After getting the fuel line fittings squared away, and turning off the stove to let the just-baked engine mount cool, I took off for a bit to run some errands, grab some lunch, and pick up some 1/8″ thick steel angle from Home Depot for the engine mount mount that I’ll weld up for the engine stand.

Upon returning home I then grabbed the cooled and cured engine mount and proceeded to remount it back onto the engine.  [A point of note: the paint on the engine mount is about a 1 meter paint job…. it looks great unless you actually get fairly close or touch it…. if it were an external component I would probably wet sand it and hit it with one more layer of paint, or clear coat even.  Obviously it will be subject to high heat, oil, dust, dirt, etc. in the engine compartment, so I’m more concerned about a robust paint job vs. a sexy one.]

After I got the engine mount remounted to the engine, I then installed the last of the fuel pump’s fittings: the overboard vent line fitting.

Yet another shot of the fuel pump fittings.

After my airplane building credentials were called into question by a yet to be named Aussie (ok, I give . . . it was Dave Berenholtz!)  Ha!  I had to prove my mechanical prowess by actually getting the amazingly challenging cotter pins installed on the engine mount castle nuts.  Seems like it shouldn’t be that difficult, but the angles and clearances are just killer! (All in fun my friend!).

Here are the top side cotter pins installed in the engine mount bolts and castle nuts.

And the bottom left cotter pin installed.  I still have no intentions of trying to do this under cylinder #4 and will swap out that castle nut with a lock nut a bit later.

With the engine mount re-mounted on the engine and everything torqued to specs, there was nothing left to do but mount the engine!  It was go time!

So here she is . . . engine is mounted!!!

I only had minor issues with getting the last 2 bottom horizontal bolts in place on the engine mount, but after a few minutes of finagling and some light tapping they went right in.

As you can see, even with the eventual fiberfrax and aluminum sheet firewall covering, the clearances are pretty good (by Long-EZ standards) with the firewall.  The only clearance concern I have is between the fuel pump overboard vent fitting and the left aileron control tube…. I’ll have to watch that closely.

The engine looked a bit small and compact mounted to what I have so far of the fuselage, so wanted to see the cross-section of the engine…. here’s a taste of what that looks like:

Tomorrow I’ll move forward with my engine data collection tasks that I outlined at the beginning of this blog post, and any related tasks as well.  Next week I plan on starting on the nose and canopy, and hope to have all this engine stuff put to bed for a while… until final engine install crops up.

 

Chapter 16 – Control System Bearing

Since I’ve been hitting the shop hard for the last few days, today was a light on shop work, heavy on research day.  I identified over 90% of my required components to roll my own fire-sleeved engine hoses (thanks Joe Coraggio for the tip on your website!).  In fact, I pulled the trigger on the first of 3 major orders that I’ll be placing for the engine hoses.

I then checked my interior CS Spar Clickbond installation that will serve as a hardpoint for the cable management Adel clamp.  Now, I don’t mean to brag, but clearly as decent as this layup turned out (90% of it in the blind), I need to start doing these things with my eyes closed!!! Ha!

Here’s a wider angle shot that provides a general idea of the entry and exit points for the wires in the cable bundle.

And one last closeup of the mounted Adel clamp.

I then did a bunch more research, but wanted to get something curing overnight.  I had already planned on installing the CS123 control system bearing into the firewall tonight…. so, that’s what I did.  I lined up the aft end control rod with the one that runs along the fuselage sidewall, mixed up some rather wet flox, and then floxed in the CS123 bearing (this is a Cozy Girrrls product btw).

Here’s a slightly lower angle shot.  I also got up into the hell hole and added a flox fillet around the front side as well.  I don’t this thing will be going anywhere with as much flox that’s holding it into place!

Tomorrow I have just a quick couple of sideline tasks to complete and then I’ll move right into my 3-DAY BLITZ on the wheel pants!

 

Chapter 9/22/23 – Hell Hole Final Prep

Final prep for installing the firewall that is . . .

I started out today by drilling a hole inside the CS Spar floor down at an angle from outboard to inboard so that the wiring coming up from the Hell Hole would better follow the contour of the side of the oval opening in the CS Spar.  My goal is to have the wires accessible and situated just inside the CS Spar oval opening.

I drilled only through the top layer of glass and then spent almost a half hour digging out as much foam as I could get to, which if you look at the circular empty cavity next to the hole as visible due to a light placed below, it’s roughly the same size as the AN970-4 washer next to it.  That’s quite a solid hardpoint considering this foam is 1″ thick [As a point of note I used Divinycell for the spar vs the Urethane called out for in the plans… so slightly heavier spar, but inherently stronger].

I filled this cavity up with about a 60/40 mix of flocro, slightly heavier on the flox, and let it cure before drilling out the hole all the way.  In addition, I concurrently laid up a 2-ply BID pad measuring 2″ x 4″ on the underside surface of the CS Spar in the Hell Hole that encircles this hole (I didn’t get a pic of that layup…)

While the stuff above cured, I then pulled the wing lights’ wiring harness back out to wire lace the wires.  Once finished I reran the wiring harness through the CS Spar.

I stopped the wire lacing just shy of each end of the CS Spar (cable lace shown by red arrow).

Here’s the right side wing wiring harness cable laced, draped over the left fuselage side.

I then cable laced the wing wiring inside the Hell Hole and secured it to the seat back via my plastic wire tie-down points.  The loose wire at the top apparently got away from me and at the angle I was working at I simply didn’t see it until I looked at this pic!  No worries, I’ll simple secure it as well.  I will say that where that loose wire is located is where I was aiming to put the wire tie-down points before the seat “reached out” and grabbed them! Still, the setup works fine and all the wires are nice and secure.

I then test fitted the big power wire runs through the Adel clamp on the bottom side of the gear leg pad.  This configuration works really well in keeping the wires from possibly getting pinched or damaged.

I really like this configuration as it looks like it will work really well in keeping the wires from getting gnawed through from any vibration…

especially at the transition from Hell Hole into the cockpit via the access hole in the GIB seat bulkhead.

I then did the final install on the FT-60 Red Cube fuel flow transducer.  After torquing both AN4 mounting bolts and the -6 tubing AN fitting nut, I applied orange torque seal to the -6 AN fitting.  In hindsight I should have applied torque seal to the AN4 bolt heads as well, so I noted that needs to be done.

Here’s a shot of the final mechanical install of the FT-60 Red Cube fuel flow transducer.

I then added cable management Adel clamp #2 to run the 3-wire cable from the Red Cube fuel flow meter upwards.  Again, I situated the Adel cable management clamps in their locations to not only keep all the wiring wrangled, but specifically to keep the wires off the aileron torque tube that traverses this part of the Hell Hole.

I then ran the 6-wire cable from the Instrument Panel along the fuselage sidewall, through the wire routing Adel clamps in the Hell Hole and up through the lower wire access hole in the CS Spar.

This 6-wire cable contains wires that interface between the EIS4000 in the D-Deck and panel avionics.  Here the 6-wire cable is heading up towards the D-Deck/GIB headrest. Note that this hole will serve as the sole remaining access hole on the lower CS spar plate for all wires heading to & from the D-Deck/GIB headrest-based components.

I also did a final install on the oil heat return line Adel clamp.

I then spent well over 2 hours shaping, cutting and installing the 3/16″ stainless steel brake line tubing that runs through the plastic tubing channel that I glassed into the gear fairing, situated on the TE of the original gear bow.

Shaping the right side brake line was a little trickier because I had to go up, over and around the big yellow power cables.  I had considered looping aft and below the cables, but I wanted as little brake line as possible hanging out unsecured in free space.  So I went up and over the big yellow cables.  I spent well over 2/3rds of my time working these brake lines on this right one.

The left was significantly easier, although bending stainless steel is not the easiest, daintiest of endeavors to undertake –especially when small bends or curves are required on a small length of tubing.  But through persistence I finally got both stainless steel brake lines routed through the gear legs and installed in the 3/16″ to 1/8″ Bi-Lock reducers (thanks to Dave B. for the gouge on those!).

All that is left now (although not a significantly EZ task) is to cut these lines near the wheels and cross connect them to the 9.25″ long -3 stainless steel hoses that are the final link in the brake line chain.

I then did the final install on the oil heat pump on the bottom centerline of the aircraft.  I like this pic below because it shows the oil heat pump, finished right brake line and secured big yellow power cables.

I had to spend a bit of time cleaning cured epoxy off the ends 2 of the 4 bolts hanging down from the oil heat pump, but after that I was able to bolt the pump in place EZ-PZ.

With all the Hell Hole prep work that I was able to finish today, I think I should be able to get the firewall mounted tomorrow…..  Inch by inch gettin ‘er done!

 

Chapter 14/23 – Baffling Extrusions

Within a day of coming back from NC I started feeling a bit sluggish, and felt a cold coming on.  Well, today it hit me pretty hard, so I’ve been moving at a bit slower pace.  I’m hoping tomorrow I’ll feel well enough to get the lower engine mount extrusions glassed into place.  On top of all that, when I woke up this morning it was a virtual winter wonderland outside, with snow continuing to fall and a good few inches already on the ground.

So I grabbed a cuppa and went through Mike Beasley’s baffles and –while looking at his website– taped a number of the pieces together to get a good idea what his were all about.

The initial confusing part on his just looking at them is that all the annotated & marked sides are actually the interior side of the baffles, with the blank sides ending up what you see when you piece them together, or the exterior side.

So once I got that little tidbit down, I was able to get a good handle on what was going on.  Here’s the inside (looking aft) of the lower skirt that wraps around the alternator & starter.

Here’s the top looking aft.

Now, since I’ll have my oil cooler in the plans location on the side of the engine and not nestled in the aft underside region of the motor, I won’t need the aft lower skirt positioned like Mike’s (and countless other EZs) so far aft that it just barely covers the aft end of the alternator and starter.  Here’s Marco’s oil cooler in the plan’s location, just forward and to the left of the motor.

Here’s Mike Beasley’s real world baffles, with the lower baffle skirt far aft to account for the oil cooler placement.  If I were going to place my oil cooler in this location, I think it might have been a better, cheaper option to just use Mike’s Beasley Baffles.  From what I can tell Mike really did a bang-up job on his baffle templates, so they are certainly a viable option for most builders that are installing an O-320.

That being said, here’s a lower baffle skirt placed much farther forward that has both the alternator and starter exposed, but still has a centerline mounted oil cooler.  My baffles will look more like this, only without the oil cooler mounted in the centerline position.  So in my situation I think it will work out better having the VANs baffle kit on hand to modify.
(To be clear, I will be using Mike’s baffle temples extensively –as I have been doing– to modify the VANs baffle kit).

I then compared Mike’s baffles to the VANs, and assessed what I would need to modify on the VAN’s baffles.  On the set of side baffles (bottom of pic) you can see my proposed line cuts off that big blank piece of aluminum, which would be on the aft side.

This expanse of baffling would normally match up to the considerably wide shelf going aft of the cylinders (see 3rd pic from top, above) and which then drops down to create the skirt running across the aft faces of the alternator and starter.  Here’s another example on Mike Beasley’s bird.

Again, since my lower aft baffle skirt will be located forward of the alternator and starter, I only need a very narrow shelf just aft of the rear cylinders to then drop down to create the lower baffle skirt.  Here’s a good depiction of what I’m talking about on Buly Aliev’s Cozy, where he used the VANs baffle kit.

I then made it down to the shop to get a little bit of prep work in for installing the lower engine mount extrusions.  I copied Dave Berenholtz in bolting a wood plate to the engine mount to help easily ascertain the mounting angle of engine mount/engine during the installation of the lower extrusions.

Here’s another shot.  BTW, the plans would have you install the engine mount so that the prop is 2° higher than the front (firewall side) of the engine.  This makes sense since the Long-EZ, like many aircraft, flies about 2° nose high.  However, remember that the 2° number is based on a 118-125 HP Lycoming O-235 engine.  If you’re pushing a few more ponies, which I and most people are these days in Long-EZs, then it takes less angle to keep the nose up.  Also, 2° high on a higher powered engine probably won’t get you level flight, but a slight climb… which then of course would mandate more trim forces in play.

For example, with a planned 220 HP engine, my buddy Dave B. set his angle at 1.1°.  So for my 180-190 HP motor, I’ll be setting my engine angle around 1.4°.

In addition to fiddling about with the baffles, I also tweaked the lower engine mount extrusions install plan and will hopefully get these guys glassed in tomorrow, or the next day (depending on how I feel of course).

 

Chapter 14 – Lower engine extrusions

This morning, as it was raining and sleeting outside, I decided to let the shop warm up a minuscule amount before heading down.  So I started off my day by creating yet another tab on my Excel build tracking spreadsheet to compile all the pertinent engine torque values.  This endeavor involved calling a couple of companies, one being B&C, to obtain/verify torque values on their products.  In addition, some of the engine torque values were shared with me by master engine & Long-EZ builder, Chris Seats.

In other news, over the past couple of weeks I have decided to undertake yet another mod (I know, I know . . .!) and build a new canopy latch based on Mike Bowden’s design since his high horizontally-situated/activated latch works much better for my configuration (read: operating space) than does the rotary latch extending down in front of the left-side panel.

Although based primarily on Mike Bowden’s design, I will combine it with the forward latch catch manipulating features of the mystery Long-EZ that I somehow have a pic of, but have not been able to find who owns it or built it.  Coincidentally, as I was compiling a buy list of all the materials I would need to construct this latch, I got a text from Mike Bowden… who graciously provided me a plethora of dimensions that I had asked him for regarding his canopy latch.

It being a very cold day outside, I also decided to do some more assessments on oil heat fittings and firewall pass-thrus before adding them to the buy list as well.

I then finalized updating/verifying the numbers on my lower engine mount extrusions install diagrams that I whipped up in PowerPoint a couple of years ago.  I also did an inventory on the glass I had cut out about a year and a half ago (IIRC). Although it was prepped for being merely wet out in prepreg and then cut, I decided to cut it into its separate component pieces.  I then had to carefully move the engine-on-hoist out of the way so I could then drop down the glass cutting table to then cut some more BID to finalize the glass prep for glassing-in/mounting the lower engine mount extrusions.

Since my fuselage is just a hair wider at the bottom (talking around 0.1″) I decided to forego the “standard” bottom engine mounts of 1/8″ thick by 1.5″ x 1.5″ 2024 angle for ones that are slightly more robust (i.e., take up the gap with aluminum vs glass) at 3/16″ thick with 1-1/4″ x 1-1/4″ legs.

Any longer legs on the engine mount extrusions other than the 1″ stock seem to need some trimming to lessen the height right at where it meets the main gear extrusion. This is so when the thick pad of BID that the extrusion gets mounted atop of (technically below on the bottom extrusions) there is some wiggle room for the engine mount extrusion to get pushed further from the CS spar and more towards the main gear mount extrusion, while avoiding any unwanted collisions betwixt the two.

Thus, for the area of the vertical leg on each lower engine mount extrusion, I removed about 0.2″ at the lower edge.  Again, just for the area immediately above the main gear mount extrusion.  I started by marking the engine mount extrusions.

Then clamping each one to my work bench –with the help of 2×4 underneath the angled aluminum to stabilize it– and used my trusty Skil saw to trim it down.  Worked a treat!

I then cleaned up each thinned out area with a hand file.

After sanding the outboard and top sides of the extrusions that will mate up to the BID pads and flox with 220 grit (as per plans), I then washed the extrusions down in warm water and Simple Green.  I then took them upstairs to mark up the bolt hole locations in accordance with the plan’s dimensions.

To ensure I don’t lose my bolt hole locations with Sharpie-destroying/blurring epoxy (after I double-checked all the measurements!) I took my drill with a small bit and drilled the slightest of a hole beginning at each mark.

It was getting late, but still wanting to get as much done during this very cold spell of weather we’re having, and to free up as much time as possible during the upcoming good build weather (if it ever comes! ha!), I decided to cut out my Beasley Baffles templates that were created by the benevolent Mike Beasley.

If you remembered that I purchased a 320 engine baffle kit from VANs Aircraft, you’d be correct.  So you may be asking why I need to cut out the templates from the ones Mike B. so graciously (yes, a lot of gracious canardians around . . .) provided me.  Well, the VANs baffles would be a great direct use-as-advertised item if I was building a tractor, top-down cooling airplane with an RV style cowling.  But clearly I’m not.  So although the VANs kit will give me a huge head start on the engine baffles, it will not be without a good amount of modification to get it all to fit and work.

That’s where Mike’s Beasley Baffles come into play.  Since his baffles are specifically for a 320 in a Long-EZ, it allows me to dial in my baffle design much, much closer by using these templates to modify the VANs baffle kit as needed.

As a reminder, Mike sent me his Beasley Baffles via email in electronic form a bit before RR last year.  I then took the 3 files down to Staples and hand them printed out on card stock. As for tonight however, it took a good hour and a half to cut these baffle templates out of the card stock.

When I went upstairs to grab the Beasley Baffles to cut them out of the card stock, I also grabbed the outline of the firewall I had traced onto 2 large pieces of scrap paper I had.  I cut & taped the firewall outline together for a real size version of my firewall that will help in determining the final layout and configuration of all the firewall components.

It’s supposed to snow tomorrow, so I’ll assess next steps in regards to installing the lower engine mount extrusions either tomorrow or the day after.  In the meantime, I’ll continue to work any tasks of opportunity that are good for rainy day tasks that I don’t want hanging over my head when the good build weather finally arrives.

 

 

Chapter 14/22/23 – Engine mount prep

I started off today by getting a bunch of paperwork in order: updated chapter to-do task lists and some powerpoint slide decks I keep on different big upcoming tasks like the strakes.  This took a few hours, after which I headed down to the shop.

I was very pleased that with an ambient humidity reading of 36% in the shop . . .

that my new engine dehydrator configuration yielded only 18% humidity internal to the engine!  Now, that’s more like it!  Anything under 30% is good and means minimal moisture in the engine, so obviously 18% is way better . . . that helps, but I still want to get this engine pickled soon.

Part of the process (or at least my process) in prepping for installing the lower engine mount extrusions is to figure out where all the hell hole resident items go.  I have a mount for the oil heat pump, and the laser altimeter for the nose gear’s new AEX system will reside on the bottom of the aircraft in the hell hole area, so the component most needing a home was the B&C SD-8 B/U Alternator relay.

My initial thought was to have it on the aft side of the GIB seat back, where I’d use a click bond stud on one side and a RivNut on the other.  However, to do either I needed to open up the slots on each end of the relay to accept a #10 screw.

I used a 3/16″ drill bit first, then subsequently a 13/64″ drill bit, to open up & widen the slots on each end of the relay.

After poking, prodding, and probing around in the hell hole, I realized with all that was traversing through this busy area, and really wanting to keep components that can more easily get snagged away from the opening in the GIB seat (for cramming stuff into for much-needed storage during flights), I decided to place the SD-8 relay in pretty much the same spot that had once been ID’d for both the electric fuel pump and the GRT MAP sensor (both which have moved on to greener pastures): the bottom side of the CS spar.

I then taped up the bottom of the relay to protect it against any untoward glue-goobers, roughed up the face of each click bond (I can’t use a RivNut on the lower CS spar cap), then cleaned the click bond mating surfaces with Acetone…. making these babies ready for some 5 min glue!

Woah!  As I was holding up the relay for a final location fit, I could visualize chunks of skin getting extracted from my forearm (accompanied by a stream of appropriate expletives) from the protruding click bond posts while I glassed in the lower engine mount extrusions. Since these click bonds can quite easily be glued/glassed in at a later time, I decided to table this exercise for a date AFTER the lower engine mount extrusions were installed.

For about 6 years now, ever since I skinned the outside of the fuselage, I have dealt with the pair of coiled-up 1/8″ aluminum brake lines in the hell hole.  Well, I hit another major milestone today in that I finally –after all these years– trimmed those suckers down to a manageable length.  In the not too distant future I will complete the brake line runs from the wheel all the way to the master cylinders.

I then scrounged up the lower WA16 wedge shaped pieces of Spruce that make up the base for the lower engine mount extrusion glass.  Just as on the top, these WA16 Spruce wedges serve to align the engine mount posts more parallel to aircraft centerline and less with the curved sides of the fuselage.

I had to trim the upper front corners of each one to get them to slide forward enough, but after a couple of trial and error rounds I got each side to fit in nicely.  Since I will not be flipping the fuselage upside down to install these lower engine mount extrusions, I’m kicking around the idea of floxing these WA16s in place first with some peel ply over top to minimize the variables when I glass in the engine mount extrusion BID pads.  We’ll see . . . more assessment & eval required.

Again, in prep for the upcoming lower engine mount extrusions installation, I had to temporarily evict another hell hole resident: the FT60 Red Cube fuel flow transducer.  If it was just the Red Cube I may have considered just taping it up, but with it’s pesky wire pigtail and the fact that it needs a good wipe down before final install, I yanked it.

I’ll of course cover up the remaining fuel line and FT60 mounting bracket with protective tape during the lower engine mount extrusions install.

I then called it a night for shop work and did a bit more research on installing & safety-wiring my Fumoto engine oil quick drain valve.  I also did a quick inventory on some more engine fittings and hardware for my upcoming monthly (apparently) ACS order.

With crazy snow forecasted for the next couple of days, I’ll continue to prep as much as possible for the lower engine mount extrusion install.  Just as a point of note: these extrusion installs, followed by the engine mount itself getting installed and subsequently attached to the engine –to facility mounting the engine to the engine stand– is priority #1 at this point of the build.

 

Chapter 3/22/23 – Work bench finished

I started off today by going down to my local Village Hardware store to see if they had a #8 “aircraft grade” 1-1/4″ x 5/16-18 bolt on hand.  This little hardware store rarely disappoints and they continued their tradition today.  The 1″ bolt I had in place for mounting the alternator-to-starter support link was just a tad short and I wanted to keep with showing the requisite 2 threads on any given mounted bolt.  As you can see, the 1-1/4″ bolt does the trick.

[If you’re wondering why I went with a #8 grade bolt here, try finding course threaded 5/16″ bolts on Aircraft Spruce, Wicks, etc. If you do, they are most likely very expensive and for a very specific purpose, such as my Lycoming starter mounting bolt].

As visible in the pics above, I already have one washer in place, and with either an added lock washer or a set of Nord-Locks there will still be visible threads.

Yes, not overly exciting stuff to report on a workbench, but in the reality of my upcoming move to NC it is a necessity of sorts that demanded a bit of time to complete this workbench for electrical work, storage, and of course a place to work on my instrument panel mockup.

I finally got my instrument panel mockup off the floor and back onto something where I can both clearly see what I’m doing (without killing my back!) and have unobstructed access to 3 sides of the panel mockup.

Another shot of the instrument panel mockup’s new home.

Although a minor detail, whenever I ventured to the aft side of the panel mockup to do work I often found myself inadvertently kicking or stepping on the battery charger that was lying on the floor.  Well, no more!  With a nice industrial wood bench I simply mounted the battery charger to the work bench frame.  A minor feat, but definitely a nice improvement over what I had before.

I then took a break after my bench building endeavors and set about to adding a number of additional component serial numbers to my Excel spreadsheet tracking list.

Moving on . . .

As I was returning home from NC I stopped off to check my mail and noticed my driver’s side headlight was out.  I had bought my other headlight at Advanced Auto Parts, and coincidentally, this auto parts chain just bought out CarQuest, the maker of the belts that B&C sells for their alternators.  Armed with that knowledge, when I went to buy a new headlight I queried the folks at Advance Auto Parts about ordering a couple new shorter alternator belts (again, since I now have a 7.5″ diameter flywheel pulley).  For some reason their system wouldn’t let me backorder the belts, so when I got home I tried online. No joy.

After spending another half hour looking for these darn alternator belts, I punted and decided to simply order them from B&C.  In an effort to consolidate, be efficient and have no wasted motion on my B&C order, I decided to finalize my requirements for the engine grounding strap and order it concurrently with the shorter alternator belts (primary + spare) . . .  but how long did the grounding strap need to be?  And what size mounting bolt holes on each end?

I spent a few hours researching the best location for the engine ground. Yes, there is a nice factory provided threaded hole on the left side of the engine casing, but since my firewall ground post and starter are on the right side, I am attempting to keep the engine ground strap on the right half engine crankcase if possible.  Finding a spot to mount the engine ground strap also required spending well over an hour digging into my baffling requirements, since I am attempting as best possible to stay clear of any baffle mounting holes.  Again, since both the starter and the firewall grounding lug is on the right side, I also wanted my engine grounding point location to be on the right side engine case for the cleanest electrical path.

After assessing what other builders had done, getting a decent layout of how the baffles would get mounted, and having a general targeted area of where I wanted to mount the engine grounding strap, I then mocked up my engine mount onto the firewall (lying horizontally) to get a decent swag as to the required length of the engine ground strap.

My original goal for the engine ground strap was to get it as close as possible to the starter, but besides mandating a much longer ground strap (weight), the best mounting positions for a ground strap are holes that will be used for attaching the baffles to the engine.  I decided that if I have a good location on the forward right engine case (next to the accessory case but still right engine half) that the electrons will still easily be able to make their way through about 16″ of good steel.  If not, I’ll readdress as required.

After scouring the right side of the engine for a good spot to mount the grounding strap, I finally decided on the location (yellow arrow above).  I then extrapolated the required grounding strap length and double checked it with my engine mount on firewall mockup. The resulting strap length, with some room for maneuvering through the maze of hoses, etc. and generally slack for anti-vibration purposes came out to 13″, with a 5/16″ mounting hole on each end.

Thus, my final act of the evening was doing what I do best on this build: spend money! I pulled the trigger on two 7312 XL alternator belts (again, primary and spare) and 13″ engine grounding strap.

Currently, that completes the inventory for all the required major engine components, minus the fire sleeved hoses.  I’m sure a few bits of hardware and fittings etc. will be required, but I’ve closed out all engine component requirements that I am currently aware of.

 

Chapter 22/23 – Electrical Workbench

Starting off, I just want to say that this will most likely be my last post for about a week since I’m hauling another load of household goods down to North Carolina in prep for my move there later this year.

One thing I did that was both helpful in the move sense and with my Long-EZ build was that I tore down the cockpit mockup/simulator that I never really did use much.  I then used the bottom base as a temporary TV stand so that I could pack up and move the actual TV stand, and then I dismantled the top part that made up the actual fuselage mockup.

With the sides of the fuselage mockup I then built an electrical work bench that will also serve to help store a myriad of electrical-related aircraft stuff that was situated on my dining room table, which –you guessed it!– is getting hauled down to NC this trip.

The pegboard that is now mounted on top of the electrical work bench was attached to the storage shelf in my shop right next to my fold down glass cutting table.  Since I’m emptying the majority of that shelf, and no longer need this pegboard down in the shop, I repurposed it to be able to organize my electrical components (note the clear plastic box to the left jammed full of bags of wiring assemblies and harnesses).

What was once the seat back in my cockpit mockup now serves as my end table (the actual end table is visible at the bottom of the pic).  The coffee table (AKA “my work desk”) and round bar-top table that currently holds up the instrument panel mockup are both going as well, so when I return I’ll be building a couple more temporary tables for the remainder of my time in this house.  Obviously tables & workbenches that I can disassemble in no time at all.

As far as actual aircraft stuff, one item that I just received is my brass 90° fuel pump overboard vent fitting.  I have to say that when I simply did a test install for this fitting, I could tell that it is going to be REALLY close to the firewall with the engine installed.  I might be required to provide a dished-out clearance on the firewall for both this fitting and possibly the B&C SD-8 backup alternator as well.  However, I will also be assessing options for a lower profile fitting (perhaps a banjo style) that might provide better clearance.

My last item to report is that I also received the Thermal Fan Controller that will control both fans in the D-Deck/Turtleback/GIB Headrest that will allow cooling for the SD-8 voltage regulator, SD-8 bridge rectifier and Electroair EI control unit, as well as all the other electrical components in that compartment (sorry for the crappy pic).

An aft side view of the thermal fan controller.  I placed the 9V batteries in the pic just as a reference for the size of this unit.  In addition to being quite small, it’s as light as a feather.

The weather has continued to be quite cold here…. again, not freezing, but pretty darn close at night while the days have been in the 40s to maybe low 50s.  Hopefully when I return from my weeklong sojourn down to NC the weather will have improved enough to start some shop work.

 

 

Chapter 23 – Engine Miscellaneous

Since I brought the engine back home to my shop, I’ve been doing a fair bit of mock engine component installs and taking note of what I’ll need on hand to finish the engine installation when the time comes.

One such subject item are the firewall pass thrus.  As I reported last week, I picked up a 1/2″ ID stainless steel firewall pass thru and liked the concept so much I ordered another 2 of them to finish off my acquisition tasks for purchasing firewall pass thrus.

After a test install of the alternator and starter, I was also able to measure and then order the appropriate alternator-to-starter support link (1.794″ version) from B&C Avionics.

I also identified a myriad number of hardware/fitting pieces that will need to be on hand to install the starter, fuel lines, exhaust pipes, etc.  Although I did identify a bunch of these items, I have not yet ordered them as I am building an order currently on ACS.

Finally, I was able to grab the parts I needed to finish off the Engine Dehydrator System. So, as I often do, I made a video to provide an overview of this system.

Tomorrow I’ll get back to the grind of completing items off my task list.  I only have a few solid build days left before I need to start packing –once again– for yet another trip to haul a load of household stuff down to NC.