Chapter 22 – More electrical tasks

Today I got all the wires labeled on the GRT EIS4000 Engine Info System wiring harness.  In addition, I was able to label the wires near the actual GRT Manifold Pressure sensor and the GRT Hall Effect sensor.  Since I ran out of wire labels —having burned through 2 cartridges in less than 3 days— the labels on the distant end of these wires (where they connect either to the EIS4000 or to ground) will come later.  Lastly, I was able to label 2 out of the 3 wires coming out of the left and right fuel tank level sensor control heads.

As you can see, I clearly made a sizable dent in the aft fuselage-located components’ wiring labels.

In my effort to lean as far forward as I can in getting the electrical components prepped as much as possible to facilitate as quick of an electrical system installation as I can eek out, I went ahead and soldered the 2 wire leads to the GIB PTT button.  These will get soldered onto the tabs of the GIB headset phone jacks when that gets installed.

Since I didn’t have standard sized solder tabs on the back side of this button to solder onto –remember, this came out of my F-15 throttle handle– I soldered the leads onto the legs of the existing capacitor that was mounted in place.  Nonetheless, when I toned it out with a continuity test all was good.

I then spent a couple of hours researching and doing some initial messing about with configuring my engine data info display on my HXr EFIS screen.  After seeing and assessing how I can go about configuring it, I got into the manual to find that I missed a HUGE piece of the installation puzzle . . . again, assumptions will bite you in the butt!

Since the EIS4000 is a standalone panel mounted instrument in its own right, but that can also be summarily hidden away so it’s sexier cousin (HXr) can get all the praise in presenting such wonderful data in bright shiny ways, all the parameters on the EIS4000 must be zeroed out with all the engine data max/min limits set in the EFIS.  Why?  Well, if an alarm rings off on the EIS4000 (remember, it’s a standalone instrument that shares its data with the HXr EFIS) with it tucked behind the GIB’s head, then there is no way to turn the alarm off!

Thus, by zeroing out the engine data parameters in the EIS4000, it then becomes an information collection point and conduit to further pass the data (and parameter limit control) to the HXr.  So along with deciding what exact info I want displayed, and how, a new task on my list is to now transfer all the engine data parameter limits from the EIS400 to the HXr (and Mini-X) and then zero out the engine data parameter limits on the EIS4000 box (except for the Aux functions… those are simply replicated between the two units).

Finally, my Winchester, Virginia-based engine builder, Tom Schweitz, called to ask me some configuration questions on the engine for the build next week.  To make absolutely sure I was answering his question on prop flange bolt size, I pulled the prop flange to confirm.  I figured since this a close-in objective, I would snap a pic of it so we can all get into an engine frame of mind….

Since my truck needs some TLC, especially before I make a couple of trips up to Winchester, VA and back…. the last trip most likely with engine in tow, I need to take a couple of days off my airplane building effort to focus on installing some new valve cover gaskets on the truck motor.  Thus, the next 3-4 days will be very light, if any, on the airplane build.

 

Chapter 22 – Check it: Done!

Yes, the cold wx spell persists (currently in the 20’s) so I’m reporting still even more news in the wonderful world of electrical system tasks completed! A lot of what I’m doing is cleanup or finalization from the original install of these components in my panel mockup. Since I’ve used this panel for months now, I am both happy with the design of it and comfortable with the flow.  Except for some 1/4″ shifts max –not that I have any planned except the center strut switches– everything is pretty much as it will be in the airplane.

My first order of business today was to solder in 2 lengths of 20 AWG wire (BLACK) for a new GNS480 ground wire(s) run.  First, as per my original plan my 2x 20 AWG power (RED) wires run forward from the aft plate of the GNS480 to the front lower LEFT corner of the panel (behind the panel), then from there traverse across the panel just above the leg holes to the 5A circuit breaker in the lower RIGHT corner of the panel.  Then one single 16 AWG wire exits the other side of the 5A CB, flows back to midpoint of the panel, then straight forward to the “Deslumpifier,” as depicted below.

After soldering the longer lengths of 20 AWG black ground wire into place, I then labeled the wire as a pair and then ran it from the GNS480 unit to the Deslumpifier, while twisting them with the power wires.  The GNS480 power wires are decent sized wires, so I should have thought of this initially when I installed the unit and took steps to mitigate any EMI/EMR noise then.  The main reason I soldered in lengths of wire vs just running brand new wires was the terminated ends that I didn’t want to waste, especially the right-angled PIDG FastONs that are a bit pricey.  In short, it was just easier and cheaper to solder in a couple of long new wires.

I then targeted the Trio autopilot wiring harness and finished labeling all the unlabeled wires in it.  The effort on the Trio autopilot also required me to add about a 6 ft extension of twisted pair of green and orange 22 AWG wires to the existing twisted pair exiting out the harness of the Trio autopilot for connection to the FT-60 Red Cube Fuel Flow transducer in the Hell Hole.  Once I cut and twisted (using a cordless drill) the new fuel flow extension wires together, I then soldered spliced them to the end of the fuel flow wires exiting out of the Trio autopilot.  I then added a few labels to the entire run of new twisted pair and called that task complete.

I added I would say at least another 30+ wire labels, both in minute recesses of the panel wiring that I had missed, or in the the new wiring schemas I was implementing today. I have to say that, except for a final, no-kidding check on the AG6 warning annunciators, CO meter, and TCW Start Smart module, with all those wires at least ~70% labeled currently, I could install the panel as-is today and be happy with the wire labeling and interconnectivity.  What I wouldn’t be happy is with the cable management, which is something I am going to undertake soon to start wrangling all those cables into a nice orderly fashion.

Another puzzle piece I had to figure out was all the OAT probes, specifically the ground points for them.  I have one OAT probe connected to the GRT HXr AHRS, one connected to the Mini-X (new design change from the EIS4000), one OAT probe that connects to the HXr but serves as an air/heat duct temperature gauge, and one OAT probe off the MGL clock.  I did some research and figured that with the signal voltage on these guys being so low (for example, the MGL uses 30 ga wiring) that I would simply tie all the OAT probe grounds in at one point on the G5 Avionics Ground Bus. I was actually shooting to tie all the OAT probe grounds into the lower, forward G4 Panel Ground Bus, but there’s a specific statement in the GRT manual to keep the OAT probe leads twisted as much as possible to optimize the signal from the sensor.  With the G5 bus being higher and farther aft on the Triparagon (i.e. closer to the positive signal wire ports of the respective OAT probes) I chose it as the best grounding point.

So that’s what I did.  Below you can see the 3 GRT OAT probes’ ground leads tied into one lead (lower right corner) ready to be connected to the G5 Avionics Ground Bus.  I labeled all the OAT probe wires and terminated the ends to match their respective tie in ports (all D-Sub: AHRS harness, J4A connector, and J3A connector).  Since my MGL Clock OAT probe is still on “probation” and subject to being swapped out if it’s numbers (temp accuracy) doesn’t improve, I simply left a pigtail hanging out of the ground harness below to tie in the MGL OAT probe.  Once that issue is resolved, I’ll solder in the MGL OAT probe ground wire and heat shrink the splice. [BTW, the GRT OAT probe leads do NOT come twisted… I had to do those by hand so as not to damage the sensors on the end of the leads].

My major push of the day was a 6-wire cable that I bought from Stein to manage and clean up a “myriad” of the single 22 AWG wires heading from in front of the panel to the D-Deck & Hell Hole areas in the back.  For a very minimal weight penalty, I now have six 22AWG wires bundled together for their journey aft (or forward…).  The 6 “chosen ones” for these wires are as follows:

  • Engine data from EIS4000 to HXr & Mini-X
  • Serial link from HXr to EIS4000 (for EIS software updates)
  • EIS alarm output to AG6 warning annunciator
  • Back-up Oil Pressure sensor power/alarm to AG6 warning annunciator
  • Hobbs meter power
  • “Starter On” alarm to AG6 warning annunciator

Today my focus would be on the forward (panel) end of this 6-wire consolidation cable. I started by stripping back the outer insulate that then allowed me to strip the ends of the wires for connection to their respective final end-point runs.

Before I connected the orange wire that provides engine information to the HXr and Mini-X, I soldered in a quick jumper wire that sends the signal from the EIS4000-to-HXr connection (J4 connector) simultaneously through the yellow jumper wire to the Mini-X (J3 connector).  Note that I created the 1/4″ bare-wire gap in the orange wire using my wire strippers, then trimmed the overhanging wire off the end when I terminated the wire with a D-Sub socket.

I then soldered the yellow jumper wire to the 1/4″ bare-wire section on the orange wire.

And covered the solder splice with some protective heat shrink.

With my initial jumper wire addition task out of the way, I then got busy soldering all the final extension wire runs into place onto the wire ends of the 6-wire cable.

And then covered all the solder splices with protective heat shrink.

I then finished up the extension wire run attachments with another couple pieces of larger red heat shrink.

After double-checking my wiring diagrams, I realized I needed another branch off the backup oil pressure sensor’s power lead to drive the AG6 warning annunciator (whenever the backup oil pressure sensor is in an alarm state).  However, as per the AG6 manual, this branch run to the AG6 requires an inline 2K Ohm resistor.  Ah, and for some reason (wink) I just happen to have some on hand!  So I bared yet another segment of wire on the backup oil pressure sensor’s red wire extension run and twisted a leg of the resistor into place.

I then soldered both the resistor connection to the backup oil pressure sensor’s red power wire extension run and white/brown lead to the actual AG6 annunciator.

I then covered all that up with some red protective heat shrink.

I spent another fair bit of time printing out wire labels and attaching them to the 6-wire consolidation cable front side wire extension runs.  I also terminated all the ends of these leads accept the ones headed to the AG6, since those simply get terminated into block terminals on the AG6.

Here’s the half finished 6-wire consolidation cable:

Of course figuring out the front side of the 6-wire consolidation cable meant determining the aft-side interfaces with the EIS4000.  During the process of building the cable above, I would fix other issues as I ran across them.  For example, now knowing that the panel On/Off LED indicator lights dim and push-to-test functions work, I cut, labeled and terminated the lead that goes from the PTT switch #4 to main bus power.

I also gleaned even more wires from the EIS4000 wiring harness, swapped some GRT wires for better quality Tefzel wires (I’m not a fan of the quality of wires that came on the EIS4000 <specifically> and swapped out 2 of the 3 wires that run into the engine compartment).  In addition, I swapped some colors out to better align with the components they were connecting to (say, yellow to yellow, etc.)  Finally, I labeled the majority of the wires in the EIS4000 wiring harness.  I’ll finish the labeling of a bunch of the EIS and D-Deck/Hell Hole area wires over the next few days.

The last big news of the day is that I spoke with my engine builder this afternoon and the engine build is a go, scheduled for next Tuesday and Wednesday.  So, as I mentioned before I will have to curtail my electrical system install shenanigans for a bit and focus on studying and prepping for my engine build.

With that, tomorrow will be another day finishing up a lot of the minutia to-do items on my electrical system tasks list.  But, besides the cable management portion, I really do see the panel wiring being pretty much a done deal by the end of the week, that includes design, configuration and labeling.  Clearly I’m moving way aft now into the D-Deck/Turtledeck components and am getting that stuff labeled as well as connectors crimped on and pigtails spliced into place, etc.  So on my engine info system and Electroair EIS, I’d say I’m near 100% on the design and will be around 75% complete on the actual installs on those two components, with actual cross-component wiring, trans-firewall feeds and mounting the only things left to do after I get the wiring harness leads labeled and terminated.

Movie’ Out!

 

Chapter 22 – The end is near!

At least the end of the wiring on the panel mockup area.

Today I got my wiring labels in fairly early and I immediately started knocking out my list of wire labels.  All told I attached well over 30 labels today.  I am close to running out of wires to actually label in & around the panel area . . . and that’s a good thing!

I was also able to finally finish wiring up the EFIS GPS to the Trio autopilot cross connect wire that I jury rigged about a month ago in finding the fix for the Trio AP not getting a GPS signal from the EFIS.  I never actually installed the circuit for final implementation, so I did today.

Another milestone I hit today was finally getting the Electrair Spark Advance AD626 Op Amp board wired to both the GRT EIS4000 and the Electroair control unit.  When I do the final install on the op amp board I’ll use a big piece of heat shrink to keep all the connectors in place.

Here’s a closer look at the Spark Advance AD626 Op Amp board with complete wire connections.

Again, while this cold spell lasts during January I’ll be knocking out as many small electrical tasks –like the ones above– until I get the list completed.

 

Chapter 22 – Inverting fuel gages

Last night at some point I was thinking about the actual physical wiring of the aft two cameras that each focus on a fuel site gage.  I knew that before I could finalize my decision that I would have to test and verify that 24 AWG wire would provide enough juice for the cameras to send a good video signal.

What was gnawing at me was an issue of consolidation, and one of cable management. Dealing with 3 separate 24 AWG wires isn’t an insurmountable task, but I thought there might be some efficiencies to be had.  I drifted to sleep with this on my mind.

Then there was the question I had this morning regarding those pesky LED lights on the fuel site gauges themselves. Hmmm, how will the wiring on these critters actually physically get run?

Then I had an idea.  An idea that has eluded me for almost 7 years, considering Vance Atkinson’s fuel site gages are the first components I purchased, IIRC, for my Long-EZ project: What if I inverted them and put the LED on top?  I pulled the installation instructions out to find, lo and behold, that the last line on the page –hand written– said that I could mount the LED on top OR bottom.  Cool!

With that info in hand, I then planned initially –to be verified with some camera tests– to use a 5x24AWG conductor wire to handle both my aft camera and fuel site gage wire runs. Each aft camera would use 3 of these wires while each fuel site gage would use the remaining 2 wires…. again, all 24 AWG wires packaged nicely in one cable.

Since I don’t have any wire label stock on hand (they should arrive tomorrow) the first thing I did today was something else I haven’t done in almost 7 years, I tested the “red” LEDs (as listed on the included specs & install sheet) on the fuel site gages to find out that they A) worked, and B) are in fact actually white LEDs, not red.

I then took about 45 minutes to get some low hanging and long overdue bits ordered.  I finally found and ordered a couple of pieces of 1.5″ diameter heat shrink off of Ebay (I checked McMaster-Carr, WAY too expensive) primarily to encase/protect my relay that controls COM1-COM2 radio flip from the control stick.  I also ordered a length of a rubber automotive seal that I’ll use for mounting the GNS480 GPS antenna puck cover atop the pilot headrest (after 20 min the ONLY source of supply for what I wanted was again off of Ebay, and straight from China no less).

I then got to work on my wiring diagrams to upend the Atkinson fuel site gages and depict their new orientation correctly.  I also better depicted their actual physical wire runs and added in the visible segment of the 5x24AWG conductor wire.  I have two diagrams, fuel system and cockpit lighting, that contain the fuel site gages so I tweaked one of them to the new “final” configuration and then merely copied over the entire new depiction to the other diagram.

I then spent a few hours doing something I haven’t done in a fair while: I created a new wiring diagram for the Video Camera Network.  Here is a saved JPG version of that diagram.  I was putting the cart before the horse slightly in that I hadn’t tested out the 24AWG wires –at least the non-shielded wire version– for the video cameras, but I was quite confident that it would work.

After compiling all the data I needed to represent the Video Camera Network wiring on a system diagram, I then set about testing my 24 AWG hypothesis.  Fortunately, I found about a 7 foot length of the exact 5-conductor wire I want to use for the aft cameras, so this would be a great representation to check the video display quality using near the same length of wire.

I then stripped off the first couple inches of the outer insulator and grabbed 3 of the wires to hook up to micro-video camera #1 for testing.  I soldered the wires to the camera leads off the tiny PCB board that the camera uses for 12V-to-5V conversion, and then hooked up the camera at the EFIS side.  I fired up the EFIS and as you can see in the lower left inset, I got a very readable video display from the camera.

Since this camera is going to be used to view the fuel quantity in a fuel site gage, I amused myself (yes folks, constant electronics will drive you stir crazy!) by placing the still-wrapped site gages in the video camera’s view to snap the pic below.

I then spent a good 20 minutes desoldering a connector off a PCB board (I stole it off the defunct 5v GNS480 indicator light that burnt up) and then soldering three 22 AWG wire leads to it.  I then connected my 5V “wide angle” video camera #3 up to the EFIS and 12v-to-5v converter to test it out.  As you can see below, although not nearly as “wide angle” as I was expecting, the video display quality is fine.

Now, I noted that a few of my 5V components go from 5V+ power on the positive lead then simply hook up to standard 12V ground on the negative lead.  Since these cameras depict and physically have a both a positive and negative side for the video signal (via the yellow RCA jack) and on the camera power input (via the red RCA-type jack) I figured each component needed a direct connection to ground.  I noted this concept was supported in Eric and Alec’s design of my 4-into-1 video signal sequencer, since on the unit’s D-Sub connector they placed a signal ground pin right next to and for each video signal input pin. Moreover, also on the unit’s D-Sub connector they had a pin for camera power and another for camera ground.  Ok, so that’s how it needed to be wired (allegedly).

But back to my 5V ground vs 12V ground, as I was testing the grounds on camera #3, I pulled the ground off the outer ring of the video signal RCA jack which resulted in ZERO impact to the video signal.  It was still right there on the screen.  In fact, I moved the camera just to ensure no weird screen capture event had occurred.

Hmmm, interesting.

Ok, so then I disconnected the ground path to the 12v-to-5v converter.  The EFIS video inset screen went blank.  I then tried re-hooking up the ground to the outer ring of the video signal RCA jack…. still no video signal.  Reconnecting camera ground brought the video back live again.

So the 2-ground requirement I had noted in the camera install manual does not seem to apply, at least for seeing the video signal.  I’ll have to double check in the manual to see if it keeps the unit from errant electrons or something.  Moreover, I tested this on camera #1 by hooking it back up and found the exact same results: no ground lead required on the video signal RCA jack.  Not a huge find in how it impacts the amount of wiring effort, since it merely eliminates 3 small ground lead pigtails… but it is nice to know.

I depicted this on my new Video Camera Network electrical diagram and with confirmation that the 5x24AWG conductor wire will work I then labeled all the wires with the appropriate wire colors.

Again, tomorrow I should be getting my wire label stock delivered so I can get back to finishing up some tasks that require wires to be labeled before next steps can be completed.

 

Chapter 22 – EIS Harness galor . . .

I started out today gathering up my GRT EIS4000 wiring harness, a 300 Ohm 1/4w resistor, and my D-Sub socket removal tool.  My task here was to add a cross connect wire from the EIS4000’s blue 4.8V excitation wire to the engines oil pressure sensor’s EIS signal input lead.  This is required to ensure the ~5V signal strength is maintained at the oil pressure’s input port on the EIS unit.  Physically, it is simply a cross-connect wire from the blue to the orange/black wire in the EIS4000’s wiring harness.

I started off by removing the blue wire from the D-Sub connector, then trimmed about a 1/4″ of the insulation off of it a few inches from the D-Sub socket and then wrapped one of the resistor legs around the exposed wire segment.

I then soldered the resistor to the exposed wire segment on the blue 4.8V wire.  Next, I soldered a short length of 22 AWG orange/black cross-connect wire to the other leg of the resistor.

I then trimmed up any protruding sharp edges and enshrined my work in red heat shrink.

On the EIS4000 oil pressure sensor port’s orange/black lead I then exposed about a 1/4″ of bare wire just as I had done on the blue wire above, only this time it was 4-5″ downstream of where I had tapped into the blue wire.  I then wrapped the stripped end of the cross-connect wire around the bare part of the oil pressure sensor wire….

and soldered the cross-connect wire to the oil pressure sensor wire.

I finished off my task with another round of red heat shrink over the cross-connect/oil pressure sensor wire solder-spliced junction.

In other news… I finally received my Bob Nuckolls recommended and Eric Page built AD626 Op Amp board (for displaying Electroair Spark Advance on the EFIS via the EIS). Once again Eric did a phenomenal job constructing this board. I really like his concept of using PIDG FastON tabs for connecting wires to the board…. nice & EZ!  Moreover, I’m extremely thankful that we homebuilders have a corroborative means such as the AEC forum to figure this stuff out.  Such an excellent resource.

Although I won’t have any wire labels until Monday, thus keeping me from completely wiring up the AD626 Op Amp Board, I did start prepping the EIS wiring harness with connective wires to connect to this rather diminutive component.  As an aside, the FT-60 fuel flow connects to a 12V+ port on the EIS4000. In addition, the manual specifically states to use this 12V+ port to connect the Fuel Pressure sensor.  Thus, since I have 12V power at the ready (the AD626 Op Amp board uses very little power), I am merely going to tap into the EIS4000’s 12V+ port to drive the AD626 Op Amp as well.

Pictured below are 2 wires connected to the bared 1/4″ section (just like above) of the EIS4000’s 12V+ out power port, making 3 out leads from this one port.  The longer original Red/Blue lead is for the FT-60 Red Cube Fuel Flow Transducer.  The next longer Red/White lead is for the AD626 Op Amp board, while the shortest red lead is for the Fuel Pressure sensor lead.

I then soldered the 2 added power wires to the EIS4000’s 12V+ out lead.

And then added some heat shrink to the solder joint.

I pretty much did the same thing as above for the ground side of the circuit by tying into the EIS4000’s ground wire.

Besides my usual antics of updating associated wiring diagrams, and sending out some email inquires with a little bit of research sprinkled in, I was also able to finish editing a video that I recorded for my buddy Dave Berenholtz.  The video discusses some topics on aircraft electrical wiring.

Again, with cold weather at hand I’ll continue in my electrical-centric mode until it starts getting a bit warmer.

 

Chapter 18/22 – Panel Indicator Lights

I started off today discussing a variety of issues via email with my buddy Dave Berenholtz, one of which was parts availability for the canopy latch system.  I took the pic below of my Wilhelmson RL-1 rotary canopy latch components to add some clarity to my email and thought I’d include it here.

I also thought this string of 1N4007G Diodes that I just got in from Mouser would also make a cool pic and show you guys what they look like in “raw” form.

Here’s one of those diodes in action on one of the pigtails I added to 5 of the 9 panel On/Off indicator lights that allows me to tie into switch #4, the Push-to-Test button’s wiring harness.  As I mention in the video (below) that I made to highlight the Push-to-Test button (and freshly wired dimmer) for these lights, I can only hook up 5 of the 9 lights to switch #4 for testing because the other 4 On/Off indicator lights contain closed systems…. where the configuration of the components that those lights report on do not support connecting them to the Push-to-Test circuitry.

The added wire –in the form of a pigtail at first– to each light is nothing more than an alternate power source that provides 12V+ input to each indicator light connected to the Push-to-Test (PTT) circuit.  The power provided by depressing the PTT button (switch #4) then flows to ground out of the other terminal of the light’s connector (via the dimmer switch).

Thus, I’m utilizing the diodes in the PTT circuitry (pigtails) on these lights as a one-way valve, preventing power being inadvertently applied to the other lights when only one has a real valid condition to cause the light to illuminate.  For example, due to the way I’ve constructed the switch #4 wiring harness, if I didn’t employ diodes on each line then when I pulled the parking brake handle, which closes a switch allowing 12V+ power to run to the indicator light, the power would then back-channel through the pigtail (switch #4 wiring harness) and power up the other connected indicator lights.  Obviously that would not be good, and as you can see these diodes prevent that scenario from happening.

Here is the same pigtail as above only covered with red (for indicator 12V+ power) heat shrink.  One thing I should point out is that the connection to these panel On/Off indicator lights for the Push-to-Test circuits utilize D-Sub pins and sockets that themselves will be secured with heat shrink.  I used D-Sub pins and sockets due to the fact over a myriad of configuration changes on the wiring system, I have spare wires terminated with these pins and sockets.  In addition, I have a good number of spare terminated 22 AWG wires of different colors (shown on the switch #4 side of the equation in its mini wiring harness) from included GRT and TCW wiring harnesses.

Just as I did on the panel On/Off indicator lights dimmer switch, I then determined the required wire lengths to the 5 lights that will be connected to switch #4 for the Push-to-Test circuit.  I stripped the ends of these 5 wires of varying lengths and then soldered them all to the lead hanging off one side of switch #4 (the Push-to-Test button).  The lead on the other side of switch #4 goes to 12V+ main bus power and since I didn’t know exactly how long this wire needs to be, I just terminated it with a cheap automotive connector for now. I then labeled the 5 terminated leads (4 pins/1socket) on this harness (I labeled the switch pigtail lead before soldering the harness together).

With my Push-to-Test switch & wiring harness complete, I hooked it up and tested it out.  I was quite pleased at how both the dimmer and the Push-to-Test functions were working.  So pleased in fact, that I decided to make a video, especially since it’s difficult to describe light dimming action, so I figured a video would help show it much better.  I also briefly touch upon the new Engine function display page on the Mini-X that I just recently loaded.

As I keep saying, with the weather as cold as it is, which prevents composite work in the shop, I am focusing on getting a bunch of these small electrical taskers –mainly panel related– knocked out.

 

Chapter 22 – Paneltronics

Today was forecasted as the warmest day we’ll have for the rest of January, with the remaining temps in the high 40’s at the warmest.  So, besides building my engine this month, I really plan on getting all the electrical stuff that I can do knocked out, plus a few tasks that I can do in a fairly cold shop.

Today was still about cleaning up some panel electronics and getting some tasks crossed off the list. I decided as I started my endeavor to solder up my Pitch Trim power ON/OFF switch for the TCW Safety-Trim system that I would do a video on aircraft electrical wiring that my buddy Dave asked if I might be able to generate.  I still have some editing to do on the video, but will get it posted on YouTube in the next day or so.

First off, in my latest Mouser order I just received 2 new mini-toggle switches with flat bat levers (my preference) for switches #11 (Pitch Trim power) and #12 (Heated Pitot Tube on/off).  Besides having 2 different brands of switches in the row of switches on my center panel column (see pic below), the switches that I replaced were ON-OFF-ON while these new ones are simply ON-OFF.  No need to waste good switch capacity, especially when the switch levers were slightly different.

I started off by wiring the 18 AWG E-Bus lead to one side of the switch, then covered the solder joint with red heat shrink.

I then prepped the supposed two 20 AWG Pitch Trim power wires (as listed in the TCW Safety-Trim manual) for soldering, but then when I went to strip them found out they were actually 22 AWG.  No big deal, just a point on how robust Tefzel aircraft wiring is in handling amps and heat.

I then soldered the 2 twisted 22 AWG wires to the remaining post on switch 11.  This switch is the “master switch” that provides power to the Pitch Trim system and exists mainly as a safety switch in case there’s a runaway trim situation.

Here’s a shot of switch 11 (code sw011) remounted in the panel mockup with the soldered wires now attached.  I’m waiting to terminate the 18 AWG wire with a FastON connector to then mount to the E-Bus until after my next shipment of wire labels arrive.

I’ve circled switch 11 in the pic below in green.

I then pressed forward with my plan to mount both GRT OAT probes forward in the fuselage, specifically in the nose gear wheel well (NB).  I removed and then disassembled the GRT Mini-X wiring harness to slip the gray wire into the mix.  Nicely, I was able to use the original OAT probe wire off the GRT EIS4000 harness that was already terminated with a D-Sub socket at the Mini-X end.

After I inserted the wire and reassembled the D-Sub back shell on the Mini-X side, I realized I should probably grab a shot of my progress.  As I noted above, I’m out of wire labels but had just a long enough piece of blank white wire label heat shrink to hand write the label for this wire…. just so I could get it in and knocked out.

I then terminated the J3 connector side with a D-Sub pin and inserted the wire into the D-Sub connector.  Again, below is a pic of the OAT wire addition task complete, with the J3 side D-Sub jack back shell back in place.

I then reinstalled the Mini-X wiring harness, fired up the panel and checked the OAT settings.  I set the HXr on Celsius, set the Mini-X to Fahrenheit, then toggled the Mini-X setting to have the OAT show on the PFD page.

As I mentioned above, tomorrow will be more electrical system tasks since it’s still fairly cold for shop work.

 

 

Chapter 18/22 – Power Busses labeled

I started off this morning reading an email from my buddy Dave in OZ extolling some issues on placing the latch for Jack Wilhelmson’s RL-1 Canopy Rotary Latch system. Dave has too many interfering components, including the left knob on his Garmin GTN650, if he tries to put it in the traditional location just in front of the left side of the instrument panel. Just as a point of note, that was seriously a big primary reason why I went with the GNS480: no left knob except the on/off/vol knob, which is still however my own limiting factor for moving my RL-1 latch up as close to the panel as I’d like.

Well, curiosity got the better of me, so I grabbed my latch and mocked it up…  I was aiming for the plans’ ~4″ in my head and mocked it up quickly, realizing immediately after I took the pic below that the longer lever doesn’t reach forward as I have it in the pic, it only just travels between the 7’ish to maybe 1 O’clock position (as I understand it).

I pulled out the installation manual and had in my notes to move the whole canopy latch shebang 1.4″ forward to allow clearance at the rollover assembly and also for the throttle. Dave’s solution looks to be mounting it mid-strake opening, thus turning it into a center controlled latch with the small catches forward and aft of the main latch, where as obviously both are aft on the plans style latch.

Since I can’t really do what Dave is doing (since Dave is building his Long-EZ to fly around the world, he has no fuselage cutouts into the strakes… the fuselage sidewalls are the interior walls of the fuel tanks), my issue becomes one of tight tolerances and clearances.

Although the cardboard cutout I made as positioned below is ~1.4″ inches forward (F.S. 42.6) of the plans’ position (F.S. 44), allowing clearance for the throttle, this position has the short fat rotary latch knob hitting my GNS480 on/off/vol knob.  Moving it aft about 0.2″ provides clearance for the knobs, but only gives me about 1/4″ clearance from the outboard top edge of my CURRENT WOT throttle position to the robust, square-edged latch cam I note in the pic above (noted as “#1 issue”).

Thus, I provide Wade’s 3-point plan for eaking out just enough room to make this work:

1. Ensure the rotary latch assembly is driven as far outboard up against the sidewall as possible when mounted to better provide clearance between the latch cam (top pic) and the outboard edge of the throttle handle.  BTW, the throttle handle’s outboard edge aligns vertically very closely with the inboard edge of the longeron (if you drew a line or strung a plumb bob and viewed it from top/aft/front), so there is clearance… but I just want more for my poor pinky!  Also, regarding the clearance between throttle and canopy latch, the real issue is only during T/O and climbs at WOT.

2.  I still need to drop the throttle down when I construct the new throttle lever.  With the canopy latch position required to be a hair aft of where I originally wanted it, I may cheat a bit and drive the throttle inboard say 0.1″, and mount it lower (the handle, not the quadrant) the furthest it will go comfortably.

3.  There’s approximately a 3/4″ gap between the front of the rotary latch’s smaller fat knob (depicted blue above) and the GNS480 face when the rotary latch is locked and closed.  Again, this is approximate of course since I don’t know the exact resting position of this knob, but it is close to what I have shown above.  This shorter latch knob will also just barely clear the bottom front edge of the “PWR/VOL” knob. However, since I come in at a slight angle from the right anyway to push the CDI button (XPDR button is inop in my setup), the short fat knob if left alone wouldn’t present a big problem.  But by driving the rotary latch assembly as far outboard as possible AND trimming about 1/8″ off the bottom (outboard) of the knob to reduce it’s overall protrusion into my GNS480 op space, I should have zero issues for any 480 button-pushing tasks that may ensue.

Moving on… After the above shenanigans, I then prepped a small “toy” that I just received in the mail: a 4.0mm OD x 1.7mm ID corded jack to power my Bendix/King AV8OR backup GPS.  I determined a good length for the cord and ended up cutting off about half of it.  I then cut each end of the cord’s 2 conductors and spliced on cheap ring FastON terminals since later I’ll make both a final cord length determination and possibly run GPS and video camera leads into one ring FastON connector –since they’re so small– for both the 5V pos & neg connections.  As you can see below, I then hooked up my new GPS power jack to the terminals on the 12V-to-5V converter.

After testing the output of the AV8OR’s original wall mounted charger (5.196V) vs the 5V output coming off my 12V-to-5V converter (5.231V) and determining that the values were very close, I then connected the converter to 12V battery power through a 3A fuse.  I then plugged in my Bendix/King AV8OR GPS unit and immediately saw the amber power in/on LED light up.  The lack of smoke, fire or popping fuse was also a good sign . . . ha!

I then pressed the ON button of the AV8OR and it fired right up.

As with most GPS units, it took a few minutes for it to find its bearings, but it then perked up and functioned as normal.  I’m very pleased to be able to have a hard-wired cord to use to power/charge this backup GPS unit without having to use up a cigarette charging port and contend with the bulky AV8OR car power charger.

I then finally rolled up my sleeves and took a few hours to label my busses with the appropriate fuse size and a very truncated description that has just enough characters to tell me what the fused item is.  Keep in mind that the labeling of these busses is for operational ease and quick fuse terminal position ID, possible troubleshooting, and/or system design updates.  Although I was aiming for neat, orderly and legible, I am NOT trying to win any beauty contests here, nor win the “Straightest, most-aligned label of the Year” award!

I started off by knocking out the Battery Bus.  Point of note is that after all these pics were taken, I did actually go back with bigger white on black labels for labeling the bus itself with “BATT BUS – BB”

Since I’m focusing on labeling the front of the busses, I thought I’d include a pic of the actual side terminal labels, which is depictive of the other busses as well.

I then knocked out the Main Bus.  If you have good attention to detail, you may note that the main bus has the fuse amp size listed above the fuse with the fuse circuit ID below it.  I already had a bunch of these labeled so I left this scheme in place on the main bus.  Not a huge deal, but I like having the actual fused component ID on the top for better visibility, so I changed it on the E-Bus.

I went out for a bit to buy some groceries and make dinner, then afterwards I knocked out labeling the Endurance bus (E-Bus).  Again, I also made a bigger white on black label and attached it to the center vertical area of the E-Bus just as I did for the Main Bus above.

In closing I have one small, but significant, development to report.  I had a good phone conversation with Marco today and during it I was conveying my frustration with the OAT readout on the MGL clock.  Since the MGL’s degrees Celsius reading is an integer, with no decimal, it makes translating between Fahrenheit and Celsius a pain since the MGL is simply off a degree or two from the HXr EFIS due to this poor equational translation.  If I could, I would merely shut off the OAT display on the MGL and be done with it.

This led to Marco asking if I had 2 GRT OAT probes and I responded I do, one connected to EIS4000 and one connected to the HXr AHRS unit.  Note: this is essentially feeding two OAT data points into the same system, for simple redundancy.  He stated that he has one OAT probe connected to each of his 2 Mini-APs and displays one on Fahrenheit and the other on Celsius.

Ah, ok, this still provides redundancy, but allows each EFIS to control how it wants the OAT displayed.  To be clear, this is most likely possible no matter what or where the actual OAT inputs are located, but the point is that I have a dedicated OAT port on my Mini-X that –after some thought and assessment– I’ve decided now to employ for OAT probe #2 rather than mess around with it back in the D-deck/Turtledeck area.  Since I wasn’t clear on how I was going to mount the aft OAT probe this puts that question to bed since the forwards mount into the nose wheel well (into NB) quite nicely.

Thus, I pulled the OAT wire out of the EIS4000 harness and updated all associated wiring and connector pinout diagrams.

Tomorrow I’ll continue to work miscellaneous electrical taskers, with the rewiring of the seat warming pads –to replace auto wire with aircraft grade Tefzel wire– coming up soon.

 

Chapter 22/23 – Bad Assumptions…

will get you every time!  We all know the saying about assuming, well I “went there!”

Before I tell you that story of woe, first some successful task completions.  My first order of the day when I went upstairs to work on some even more tweaking of electrical diagrams was to hook up my nose gear auto extension system’s laser altimeter to my PC via the included USB cable to finally configure the settings.

After I downloaded and installed the Lightware terminal program, I then proceeded to set all the operating parameters for the laser altimeter.  Of course that meant going paragraph by paragraph through the manual to make sure I didn’t screw anything up!

As I was tweaking the electrical diagram for the engine systems and EIS4000, I wanted to investigate further a note I had on my VDO HPS-01 Oil Pressure sensor.  The manual states that the case must be grounded, but the sensor only includes one terminal for the signal wire. As I went back through my notes I had highlighted a myriad of issues builders had had with these VDO sensors . . . mainly in wonky sensor readings caused by poor or no grounds.

Enter rabbit hole!  Well, I wanted to get to the bottom of this since it was a point on my electrical diagram that was cloudy and unknown to me.  I wanted an answer to this riddle so I could press forward with this variable turned into a constant.  After an hour or so of researching my notes, manuals, forum posts (mainly VAF) and other notations, even from canard heavyweights like Marc Zeitlin, I came to the conclusion that my VDO oil pressure sensor, did “in fact,” need a grounding tab attached to the case as spelled out by the EIS4000 manual, et al.

I looked online for these tabs, and after not being able to find a source of supply, I decided to construct one myself from some multi-connnecting Fast-ON tabs I had on hand.  I simply bent the wings of the female connector out to then create curved “wings” that could then be attached to the case of the VDO oil pressure sensor.

Patting myself on the back for my sheer ingeniousness, I then read up on brazing vs. soldering, concluding there that with brazing being generally 5x stronger than soldering, I should “in fact” go that route.  I perfected my expertise by watching a few YouTube videos on brazing, and with my newfound knowledge in hand I ran down to Lowe’s and grabbed some bronze brazing rods.  Ah, my plan was coming to fruition!

I got home, cleaned up both surfaces to be brazed with steel wool and then some wipes with Acetone.

I had let a wood board soak in water while I was gone and used that as the underlayment for my project.  Yes, all ready to go!

And then the “fun” began…. with my portable propane torch I attempted to get this baby red hot.  Well, after not doing that, but inadvertently burning some of the plastic assembly on the top side of the sensor (merely cosmetic) and realizing my best attempts of getting any bit of the brazing material to lay down was a lesson in futility, I called it quits.

Hmmmm?!?!?!

I then decided that since I had a fair bit of surface contact between tab and case, I would try my hand at soldering the tab onto the case.  Again, no joy!  The case seemed to be impervious to any attempts to attach anything to it!  Crazy . . . .

Here’s the sad aftermath of my attempts to attach a grounding tab to the side of my VDO oil pressure sensor.

Now, here’s the kicker.  I did learn a lesson in all this.  After failing miserably above, I went back into research mode.  What was the deal with this VDO sensor?  Did they make others (they do) with a terminal for a ground wire (they do).  Hmmmm?  So I uploaded all my pics, put my notes in my blog to finish in the morning, and then called it quits for the evening.

However, as I was getting ready to head to bed, I was looking through pics of installed VDO oil pressure units in aircraft.  Now, I knew if it was installed straight to the engine case (which is a no-no in itself) that it didn’t need a ground wire since the case was grounded. But I was seeing pics of remotely mounted 1-terminal VDO oil pressure sensors like mine WITHOUT a visible grounding wire!

What gives?!

Thus the need for my ground wire . . . or . . . wait a minute!  Ahhhhhh! I quickly did a continuity test on my engine sensor manifold block and –Voila!– it’s conductive!  I got a solid tone with one probe on one end and the other probe on the VDO oil pressure case at the farthest point I could get from the first probe.

Thus, my ASSUMPTION that the manifold block was a non-conductive aluminum spun me off on a wild goose chase and caused me literally hours of un-needed effort!  Combine that with the note on the GRT EIS4000 diagram that states: “The case of the sensor provides a ground connection for VDO type sensors.”  I had simply allowed the word “case,” combined with all the horror stories and accounts of the requirement to attach a grounding tab lure me down a road that was entirely unnecessary!

Ok, so here’s a shot (I cleaned up the nasty brazing/soldering marks off the VDO oil pressure sensor with steel wool earlier) of my engine sensor manifold with the sensors attached.  The top left is of course the VDO oil pressure sensor that sends a signal to the EIS4000.  The sensor beneath it is a simple backup oil pressure switch that drives a “Low Oil Pressure” light on the AG6 warning annunciator in case I lose my EFIS, EIS, etc. The sensor with the black cable running out of it is the Fuel Pressure sensor.  On the right you can see 2 brass barbs, one is for the PMag MAP tube and the other tube runs through the firewall into the hellhole where the Electroair and GRT MAP sensors are located.

At this point I’m not sure exactly where or in what orientation the engine sensor manifold block will get mounted, so I included a pic showing it oriented vertically.

I should note that in addition to all the antics above, I spoke with my engine guy up in Winchester, VA.  We scheduled the engine build for the end of next week, so again, I’ll start ramping up for that in earnest early next week.

Tomorrow I plan to get back to the plan, and that is to really make an honest attempt to finish labeling my power busses!

 

 

Chapter 22 – Bringing boring back…

Snooze alert!  The stuff you’re about to see is boring …. good heavens, even I’m bored with this stuff!  I tell ya, the one good thing about working seemingly endless hours on the mundane tasks is that it really makes you itch to get back into the shop and sniff epoxy.

I spent over 5 hours yesterday scrubbing & updating every wiring system diagram I have on hand.  I figure that if all goes according to plan that this will be the last winter I have before my first flight to knock out all this nitnoy stuff…. again, much of it that I haven’t gone over in quite a while.

Today I spent a few hours on the phone discussing build topics with another Long-EZ builder, it was a great discussion but it put a sizable dent in my schedule. Why build airplanes when you can TALK about building airplanes?! … ha!

I then did some more cleanup on a few more electrical-related docs before getting down to business.  After attaching about a dozen wiring labels, I then stripped off some of the heat shrink over the solder splice on the Electroair electronic ignition’s control unit ground wire.

I had removed a Deutsch connector a while back and simply soldered the 2 wires together, but now I needed access to that solder joint to splice yet another wire into the mix: the 22AWG lead that will be the negative input (V- In) to the AD626 op amp board for Spark Advance reporting to the EIS.  Again, the signal coming out of the Electroair control unit is too weak so I need to literally amp it up by a gain of 10 so that the GRT EIS can use the strengthened signal to report the Spark Advance to the EFIS screen.

After exposing the original solder splice joint, I then soldered the 22AWG wire into the joint.

I then recovered the new solder splice with some more heat shrink.

Next, I focused on my 12V-to-5V power converter.  What will it be used for you ask?  Well, in order to use an aft-looking wide angle video camera that I’m going to mount at the top of the headrest, I need to use a 5V power signal to drive it.  In addition, I want to mount and use my Bendix/King AV8OR portable back-up GPS in the lower left corner of the panel, which too uses 5V power.

So I made up, labeled and terminated the power and ground wires for the 12V-to-5V power converter and screwed them in place on the terminals.

I have a power wire jack on order for the BK AV8OR GPS, and I need to acquire some 24AWG wire before proceeding with wiring up the video camera, so below is as far as I’m going to go on the 12V-to-5V power converter for now.

I then assessed and marked the plywood instrument panel mockup to drill a 3/8″ hole for the panel ON/OFF indicator LED lights’ dimmer.

After drilling the hole and cleaning up the sawdust, I then test mounted the dimmer switch and knob…. not bad.

I then got to work on cutting and soldering the panel ON/OFF indicator LED light ground wires to the dimmer switch.

While I was in the vicinity, I also removed the panel ON/OFF indicator LED lights’ Push-to-Test switch and soldered the power leads to it as well.

I then added heat shrink over the soldered leads for protection.

Tomorrow my focus will be on getting the Power Busses labeled, which was part of my tasks today in doing some final determinations on what components go to what tabs on the power busses.  I also updated some ground bus tab and connector pin assignments.

Yes, this stuff can be mundane and boring at times, but it is quite necessary and has proven worthwhile considering the number of small oversights that I keep finding on my diagrams and spreadsheets.  I think nearly all the clerical mistakes have been corrected now, allowing me to start off 2018 with all my electrical system docs and diagrams in order!